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1. Executive summary 

Two simulation studies were undertaken to determine which of two stock reduction 
estimators of virgin biomass was better, and to determine appropriate survey 
frequencies for relative biomass indices and absolute biomass indices. 

Both studies used similar models and methods. An "operating model" (an assumed 
model of reality, which includes statistical assumptions about the observations) was 
used to generate simulated observations. For each of a number of estimation methods, 
a population model (identical in structure to that of the operating model) was used in a 
fitting procedure to estimate virgin biomass and the proportionality constant for a 
relative abundance time series. In both studies a variety of models was used. A hoki- 
type model, with average year class strengths, was used as a "baseline"; sensitivity 
tests included the use of an alternative catch history and non-average year class 
strengths (in the operating model). 

In the estimator performance study, two proportional-squared-error MIAEL estimators 
of virgin biomass were compared on the basis of their information indices (a measure 
of their average performance as estimators). The two estimators were the "standard" 
MIAEL estimator (based on a least squares point estimator), and a "double" MIAEL 
estimator (identical in structure to the standard estimator, but with the observations 
first transformed into MIAEL estimates of relative biomass). The results of the study 
suggest that there may be little to choose between the standard and double MIAEL 
estimators in estimation performance. However, only a few operating models were 
tested, so it may be that there are circumstances under which one estimator could 
substantially outperform the other. 

In the resource survey frequency study, six survey patterns were considered starting 
from a "baseline" assessment in 1997, with later assessments in 2003. It was assumed 
for 1997 that a relative abundance time series already existed (1992 to 1996 
inclusive). Extensions to the time series were considered using different frequencies 
of relative abundance indices, with the inclusion or not of some absolute abundance 
indices. 

When the assumed estimation model was identical to the operating model, increased 
survey frequency or the inclusion of absolute abundance indices generally improved the 
performance of estimators. However, when the estimation and operating models 
differed, the inclusion of more data or absolute abundance indices sometimes resulted in 
vastly inferior estimator performance. This lack of robustness, specifically to errors in 
assumed year class strengths, suggests that it is unlikely that any useful rules of thumb 
for detemlining appropriate survey frequencies could be derived for MIAEL estimators 



which assume known year class strengths (unless robustness considerations are ignored). 
Whenever possible, planning of future survey work should be based on individual 
analyses of each relevant stock (including testing the robustness of the results to 
estimation model errors). 

2. Introduction 

This document describes two simulation studies undertaken as part of the stock 
assessment methods research project in the 1996-97 fishing year (FMFMOl). The first 
study concerns the performance of two estimators of virgin biomass and was done 
under Objective 1 : To evaluate the performance of alternative estimators. The second 
study concerns the appropriate frequency for relative or absolute biomass surveys and 
was done under Objective 2: To develop the use of simulation models for resource 
survey planning. 

In Objective 1 it was proposed to investigate alternative stock reduction estimators of 
virgin biomass and maximum sustainable yield for stocks where relative abundance 
indices are available from trawl surveys. The aim was to enable optimal estimators to be 
used in the assessment of many middle depth and inshore stocks for which trawl survey 
data are currently being collected. 

It is easy to develop an estimator for any particular item of interest (a model parameter 
or a fishery performance index). Such an estimator may be intuitively appealing andlor 
be based on common statistical practices. However, the most important aspect of an 
estimator is whether it typically produces "good" estimates (for a given definition of 
"good"). For instance, a common measure of an estimator's performance is its mean 
squared error (MSE); one estimator is better than another if it has lower MSE. The 
generalisation of MSE is expected (estimation) loss for a given loss function (Berger 
1985). Normally, amongst competing estimators, no one estimator will be uniformly 
best over the domain of true values. This problem, combined with a desire to rank 
estimators, has lead to the development of optimal estimators which minimise in some 
sense "average" expected loss (where the averaging is done over the range of true 
values). Optimal Bayes estimators are the best known example, and more recently 
MIAEL estimators have been developed in a fisheries stock assessment setting (Cordue 
1993, 1995, 1998). 

MIAEL estimation was developed in a stock reduction setting for hoki stock assessment, 
and has also been used to assess ling, hake, and gemfish stocks. The principle of 
obtaining a "best" estimator has been applied only from the stage of given relative 
biomass indices. For example, trawl survey data are analysed to produce a relative 
abundance time series, and the MIAEL principle is applied only to the given abundance 
time series, not the original trawl survey data. It was hoped that the earlier application of 
MIAEL principles would give estimation benefits that flowed through to the final 
estimation of virgin biomass, or maximum sustainable yield. 

The estimator performance study compares the information indices of two MIAEL 
estimators for a variety of operating models (a base case model. and a number of 
variations on it as sensitivity tests). The t\vo estimators are the --standard" MIAEL 



estimator (based on a least squares point estimator) and a "double" MIAEL estimator 
(identical in structure to the standard estimator, but with the observations first 
transformed into MIAEL estimates of relative biomass). 

Objective 2 planned to build on earlier modelling work to develop some good rules of 
thumb for the planning of research surveys. A comparison of the information value of 
relative abundance indices and absolute abundance indices was planned. The precision 
and frequency of surveys necessary to obtain "adequate" estimates of virgin and current 
biomass was to be examined for both absolute and relative abundance indices. 

Relative abundance indices, obtained from research surveys or catch per unit effort 
analysis, are a primary data source for many fisheries stock assessments. Numerous 
population-dynamics models and estimation procedures have been developed to use 
relative abundance indices in quantitative stock assessments. However, little work has 
been done on the research planning aspects of the collection of abundance indices. This 
is an important issue as fisheries abundance surveys using research vessels are typically 
expensive. 

A formal method for evaluating research survey plans has been developed in the context 
of MIAEL estimation where an "information index" is calculated for each research 
survey scenario. This method has been applied to hoki research planning (Cordue 1996). 
The results clearly demonstrated the additional benefits obtained from absolute rather 
than relative abundance indices. Generalisations from this work were sought in the hope 
that some general rules of thumb could be developed regarding the appropriate 
frequency and precision of surveys 

The study of resource survey frequency mainly uses the standard MIAEL estimator to 
compare information indices for a variety of resource survey scenarios over several 
operating models (a maximum likelihood variation was also briefly investigated). In 
this study, estimation of both current and virgin biomass is considered. 

3. Methods 

This section describes the population model used in the work (see Appendix 1 for the 
equations), and details the scope and methods of the two simulation studies. Both 
studies use similar methods, including the same population model. The MIAEL 
estimators used in the frequency investigation are based on two types of point 
estimators: a least squares and a maximum likelihood estimator (see Appendix 2 for 
details). The "double" MIAEL estimator, which is compared with the standard 
MIAEL estimator in the performance study, is derived by transforming the 
observations to MIAEL estimates of relative abundance in the sum of squares 
(Appendix 3) and then applying MIAEL estimation to the transformed observations. 
All of the MIAEL estimators used in the studies are best p estimators using a 
proportional-squared-error loss function (see Appendix 4 for best p estimators and the 
forn~ulation of the information index). 



3.1 Model hierarchy 

It is useful to bear in mind the hierarchy of "models" which is involved in these 
simulation studies. At the highest level is a population model structure which defines 
a framework within which particular models are created. The framework sets out the 
relationships between the parameters of the model-particular parameter values are 
not specified, just the type of parameters and their relationship to each other. 

At the next level are h l ly  or partially specified models where particular values are 
specified for all or most of the parameters. For example, from a given framework an 
orange roughy population model could be defined by specifying a suitable maximum 
age and appropriate growth parameters; similarly, with different parameter values, a 
hoki model or a snapper model could be defined. 

Whenever population models are used for estimation purposes, then in addition to the 
population model there is a "data model". This includes the available observations and 
a precise description of how they relate to the (model) population. For example, a time 
series of acoustic surveys might be taken to be absolute indices of spawning biomass, 
with each year's index assumed to be normally distributed about the true spawning 
biomass. 

The terms "operating model" and "estimation model" are used in this document. For 
the purposes of simulation, involving estimation of population parameters, an 
"operating model" is a partially specified population model and a corresponding data 
model. When values are specified for the unknown parameters of an operating model, 
simulated data can be generated using the data model. By simulating over a range of 
true parameter values, one or more estimators can be evaluated for average 
performance or their estimation properties. For example, the bias of an estimator is 
approximated for a particular realisation of an operating model by performing a large 
number of simulations using the given data model, and on each simulation run 
calculating the estimate and then subtracting the average estimate from the known 
value of whatever is being estimated. If this is done for various true parameter values 
then an average bias can be calculated. 

An "estimation model", in this document, refers to a partially specified population 
model and a corresponding data model, which are used for the purposes of estimation. 
For an initial point estimator (on which a MIAEL estimator is based) the unknown 
parameters in the model (i.e., those not specified) are estimated by searching for 
parameter values which generate predicted values (i.e.. from the model) which in 
some sense best "fit" the available observations (from the data model). 

In the studies in this document, the operating models and estimation models all have a 
common population model structure (described in Section 3.2) with virgin biomass 
unspecified. The estimation and operating population models can therefore differ only 
in the values that the specified parameters are assigned. The only deviations in 
parameter values considered in this document are those of year class strengths. In the 
estimation models the year class strengths ore always equal to unity. but in some 
operating models non average year class strengths are used. 



3.2 Population model structure 

The population model is a spatially disaggregated adaptation of a succession of 
deterministic two-sex age-structured single-stock models (Cordue et al. 1992, Cordue 
1993, 1994, 1995). The earlier models were successive refinements of that of Mace & 
Doonan (1988). This model has a multi-stage annual cycle incorporating a two-stage 
pre-spawning season and a two-stage spawning season. The length of the spawning 
season is specified and the spawning and pre-spawning seasons are each split into 
halves. Three areas are defined: a spawning ground; a home ground, which is also the 
nursery ground; and a "corridor", which is used to move fish between the spawning 
ground and the nursery. The stock is assumed to have a Beverton-Holt spawning- 
biomass to recruitment relationship. Fishing occurs in the spawning ground during the 
spawning season and in the home ground during the pre-spawning season. There is no 
fishing in the corridor. 

3.2.1 Annual cycle 

In the virgin state the fish population is in deterministic equilibrium: fish move between 
areas during their annual cycle, but recruitment to the stock results in exactly the same 
number of fish in each area for any given point in the annual cycle. When fishing is 
introduced into the system, the annual cycle remains the same, but the equilibrium is 
interrupted. 

The cycle is described below. Four terms are used to denote members of the fish 
population: "larvae", "juveniles", "adults", and "fish". "Larvae" are spawned on the 
spawning ground; they are the new entrants to the population. When they are 1 year old 
they become "juveniles". At some stage "juveniles" mature and become "adults". The 
term "fish" denotes "juveniles" or "adults" (not "larvae"). 

Stage I :  Beginning of year 

Fishing year begins. 

Stage 2: Corridor migrations and maturation 

Larvae move from the spawning ground to the corridor. 

Some juveniles move from the corridor to the nursery. 

Some juveniles mature (and become adults). 

Stcge 3: Pre-spawning .r.ea.son:Jirst half 

Natural and fishing mortality are applied to fish in the home ground. 



Natural mortality is applied to fish in the corridor. 

Stage 4: Pre-spawning season: second half 

Natural and fishing mortality are applied to fish in the home ground. 

Natural mortality is applied to fish in the corridor. 

Stage 5: Ageing and spawning migration 

Fish become 1 year older. 

Larvae become 1 year old juveniles 

Some adults move from the home ground to the spawning ground. 

Stage 6: Spawning season: firsf half 

Natural and fishing mortality are applied to fish in the spawning ground. 

Natural mortality is applied to fish in the corridor and the home ground. 

Larvae are created in the spawning ground (based on the mature female biomass 
present). 

The sex of larvae is determined. 

Stage 7: Spawning season: second half 

Natural and fishing mortality are applied to fish in the spawning ground. 

Natural mortality is applied to fish in the comdor and the home ground. 

Stage 8: End ofyear 

Adults return from the spawning ground to their home ground. 

3.2.2 Model parameters 

In the following the subscript i always refers to the ith fishing year. Ages are subscripted 
by j and sexes are subscripted by s. 



Size of the fish stocks 

Bo Equilibrium mid spawning-season biomass in the spawning ground. 

R, The recruitment strength multipliers: multipliers of the total number of 
larvae as given by the Beverton-Holt stock recruitment relationship. 

Cycle parameters 

Stage 1 : 

None. 

Stage 2: 

nurs, 

m-ogs j 

Stage 3: 

sp-length 

Ms 

max_hm 

sel-hmsj 

Stage 4: 

See stage 3. 

The proportions of juveniles which move from the corridor to the 
nursery. 

The proportions of immature fish which become mature. 

The length of the spawning season as a proportion of the year; thus the 
length of each half of the pre-spawning season is 0.5 * (1 - sp-length ). 

The mean weights of fish during the pre-spawning season. 

The instantaneous rates of natural mortality. 

The maximum exploitation rate (ratio of catch to beginning of pre- 
spawning season biomass) for the home ground. 

The relative fishing selectivities for fish in the home ground. 

Stage 5: 

SPUM:t'lg The proportion of mature fish which migrate to the spawning ground. 



Stage 6: 

sp - length 

ws ,j 

Ms 

max_sp 

p-out, 

s e 1 - s ~ ~  j 

steep 

p-male 

Stage 7: 

See stage 6. 

Stage 8: 

The length of the spawning season as a proportion of the year; the length 
of each half of the spawning season is 0.5 * sp - length. 

The mean weights of fish during the spawning season. 

The instantaneous rates of natural mortality. 

The maximum exploitation rate (ratio of catch to beginning of spawning 
season biomass) for the spawning ground, assuming that all spawning 
fish are available to the fleet. (The assumption allows for the possibility 
that part of the spawning ground could be closed to fishing.) 

The average proportions of spawning biomass available to the fleet 
during the spawning season. 

The relative fishing selectivities for fish in the spawning ground. 

The steepness of the Beverton-Holt stock recruit relationship (based on 
female biomass in the spawning ground). 

The proportion of larvae that are male. 

No specific parameters: all of the spawning fish return to their home grounds. 

3.2.3 Fishing mortality 

During the pre-spawning season fishing can occur only in the home ground. During the 
spawning season fishing occurs only in the spawning ground. No fishing occurs in the 
corridor. For each of the grounds in which fishing can occur, there is a sex and age 
specific selection ogive (Section 3.2.2) which is always proportional to the instantaneous 
fishing mortalities applied to each sex specific age class. When both adults and juveniles 
are present on a ground during fishing, the fishing mortality is applied equally across the 
maturity categories (i.e., fishing selection is not a function of maturity). Limits on the 
exploitation rate are imposed for the home ground (Section 3.2.2, Stage 3). Similarly, 
there is a limit on the spawning ground exploitation rate (Section 3.2.2, Stage 6),  though 
there is a complication because of an allowance for a possible closed area (see Cordue ef 
cil. 1 992 ). 



3.2.4 Calculation of fishing mortality 

For a given fishing period (pre-spawning or spawning season in some year) constant age 
and sex specific instantaneous fishing mortalities (F,, for sex .r and age j )  are assumed. 
This results in the familiar Baranov catch equation. Given a catch by weight of W(t) over 
a time period t the fishing mortalities Fsj = F s,, are calculated from the known 
selectivities ss, by iteratively solving the following equation for F: 

where the Ms are the natural mortalities, the asj are the average fish weights, and the Nsj 
are the numbers of fish at the start of the period. Note that W(t) is limited by the 
restriction on the catch to beginning-of-period biomass ratio. When the specified catch is 
too large, the maximum possible catch is substituted. 

3.2.5 Equilibrium distribution 

In the virgin state the stock is assumed to be in deterministic equilibrium: each year, for 
any given point in the annual cycle, there are the same number of fish in every category 
(i.e., by sex, age, maturity, and area). Explicit formulae giving the number of fish in each 
category at each time point in the cycle can be complex and have not been derived. The 
key technical point of interest is that the equilibrium mid spawning-season biomass (Bo) 
can be expressed in terms of the total number of larvae produced in the spawning 
ground by the equation: 

where N is the total number of larvae and a is the spawning biomass per recruit (a can 
be derived by calculating the equilibrium spawning biomass resulting from N = 1). The 
constant a depends on the cycle parameters (Section 3.2.2). Hence, for any given 
equilibrium biomass, the above equation can be solved for "virgin recruitment" (N) and 
the equilibrium distribution can be put in place. 

3.3 The baseline model 

In both studies, "hoki" type baseline operating and estimation population models were 
used. For the most part the operating and estimation models were the same. The 
population model parameters were chosen so that the model was similar to that used in 
recent assessments of the western hoki stock (Ballara et al. 1997. 1998), except that 
average year class strengths were used and the closed area covering part of the spawning 
ground was ignored. There are minor differences in the biological parameters due to the 
somewhat different requirements of the new model and other minor adjustments (Table 
1). Extra biological parameters needed by the new model are the spawning season 



length, the proportion of male larvae at birth, and the corridor migration ogive. The 
other biological parameters are common to both the old and new models and were given 
the same values, except that the proportion spawning was rounded up from 77% to 80%, 
and a slightly flatter maturity ogive was used (based on estimates obtained using a multi- 
stock hoki model - author's unpublished results). 

The fishery parameters of the new model are the same as in the old model, except that 
an explicit selectivity for the home ground is defined (Table 2). In the previous model, 
maturity was assumed to coincide with recruitment. This ignored the fishing on 
juveniles in the home ground (i.e., the Chatham Rise) during the pre-spawning season. 
The selectivity in the new model explicitly allows for this, but makes the younger fish 
far less vulnerable than the older fish (see Table 2, the vulnerability of hoki is assumed 
to peak at ages 5 and 6 - based on the author's unpublished estimates from a multi- 
stock hoki model). 

The annual parameters of the baseline population model differ from those used for the 
western hoki stock: the catch history is the same (Table 3) but average year class 
strengths and full availability of the spawning fish to the fleet are assumed (i.e., no 
closed area on the spawning ground). 

Three alternative scenarios were also used in the studies: an alternative catch history; 
generally below average year class strengths; and generally above average year class 
strengths (Table 3). The non-average year-class-strengths were used only in operating 
models (with the baseline model used as the estimation model in those cases). The 
alternative catch history was used simultaneously in associated operating and estimation 
models. 

3.4 Data models and parameter estimation 

In both studies, only two parameters were estimated, virgin mid-spawning season 
biomass (Bo) and the proportionality constant for the relative biomass index (q). For the 
purposes of simulation and estimation, bounds were placed on Bo in the operating and 
estimation models, respectively (Table 4). The alternative catch history model has a 
much lower range on Bo than the baseline model, it models a much smaller stock. The 
lower bound on Bo of the non-average year-class-strength models differs from that of the 
baseline model. The lower bounds in the operating models are approximately equal to 
the minimum levels of virgin biomass which would allow the full catch histories to be 
removed, given the maximum catch to biomass ratios assumed (see Table 2). Hence, 
with lower than average year class strengths, a higher minimum biomass results, and 
with higher than average year class strengths, there is a lower minimum biomass 
(Table 4). 

In both studies a variety of research survey scenarios are considered, six in total. Two 
assessment years are considered, 1997 and 2003. For 1997 the available observations are 
a single relative abundance time series from 1992 to 1996 inclusive. For the assessments 
in 2003, five further scenarios are considered: an extension of the relative abundance 
time series. either annually, biennially. or triennially, and triennial surveys with either 
one or two absolute abundance estimates (Table 5). 



Each index in the relative abundance time series was assumed to be normally distributed 
with a C.V .  of 25%. The absolute abundance indices were assumed to be normally 
distributed with a c.v. of 35%. In both cases the indices were assumed to relate to mid- 
spawning season biomass. 

The results of each study consist of a collection of information indices calculated for a 
variety of combinations of research survey scenarios and alternative MIAEL estimators. 
The research survey scenarios, or "index patterns", have already been described. The 
estimators considered were: the "standard" MIAEL estimator (based on a least squares 
estimator, with equal source weights for each time series; .we Appendix 2); two 
"double" MIAEL estimators (based on MIAEL estimates of the observations, with two 
different assumptions about the bounds on q; see Appendix 3); and a MIAEL estimator 
based on the maximum Likelihood estimator (see Appendix 2). All the MIAEL 
estimators used a proportional-squared-error loss function and a best p formulation (see 
Appendix 4). In the estimator comparison study only estimation of virgin biomass was 
considered. In the other study, both virgin biomass (Bo) and current biomass (Barrent) 
were done. 

The maximum likelihood MIAEL estimator was used only four times: with the baseline 
model for estimation of Bo and B,,,,, for both the 1997 assessment year and the annual 
extension in the 2003 assessment year. Since, in all four cases, the information indices 
were virtually identical to those of the standard MIAEL estimator, investigation of the 
maximum likelihood MIAEL estimator was not continued. 

In the estimator comparison study, two "double" MIAEL estimators were initially used, 
each based on a different assumption about the bounds on q: (a) q e [.I, 21 and 
(b) q E [S,  101. (Note, in the simulations the true value of q is always 1.) The two 
estimators gave very similar information indices for Bo when the baseline model was 
used with the relative abundance time series scenarios. The second double MIAEL 
estimator was used exclusively in the later comparisons (with the standard MIAEL 
estimator). 

Stratified random sampling was used to obtain an approximate information index for 
each MIAEL estimator of Bo (see Appendix 4 for the basic formulation of an 
information index). This method allows estimation of the precision obtained on the 
information index, and this was done for some of the information indices to ensure that 
adequate precision was obtained for the studies. The bounds on Bo in the operating 
model were split into six equal intervals. Random values of Bo were generated within 
the bounds, using a uniform distribution, until there were exactly two values within each 
of the intervals (the same seed was used for all models in the generation of Bos, so that 
models with the same bounds used the same Bas). At each of the 12 values of Bo, 100 
simulated point estimates were generated (using the given estimation model and the 
point estimator associated with the given MIAEL estimator. The simulated data were 
creating using different seeds for each Bo, but the same seeds were used across all 
models). Where the operating and estimation models were the same. the approximate 
information index of the best p estimator was calculated directly from the simulated 
estimates. The best p estimator was determined by searching for the value of p which 
minimised. within the best p class of candidate estimators, the average proportional 



mean squared error (i.e., averaged over the 12 points; this approximates the Integrated 
Average Expected Loss for a proportional squared error loss function-see Cordue 
1995). 

When the estimation model differed from the operating model, two information indices 
were determined: that which would be "reported" if the operating model were assumed 
to be identical to the estimation model (obtained as above, from the best p estimator 
when the models are the same); and the "actual" information index. The actual 
information index was calculated (using the correct operating model) as the information 
index of the best p estimator which gave rise to the reported information index, that is, 
using the value of p which is optimal for the estimation model when used as the 
operating model, rather than using the optimal value o f p  for the actual operating model. 

The calculation of information indices for MIAEL estimators of Bct,rrenl was analogous 
to that for Bo (the process is the same, but all Bas must be mapped to BcUrwn,s, be they 
estimates or true values). Note, Barren, is a function of Bo, within both the operating 
model (governing true values) and the estimation model (governing estimates). The 
main difference in calculating information indices for B,,,,, is in the generation of the 
random values of Bo. Bounds on Barren, were determined from the bounds on Bo (in the 
operating model) and these bounds were divided into six equal intervals. Random values 
of Bo were generated using a uniform distribution until there were exactly two 
corresponding values of Badrren, in each interval. One hundred estimates of Bo were 
generated at each of the 12 points, and these were transformed into estimates of Barren,. 
The best p estimators and information indices were then determined as described above 
for Bo. (Note, B,,,, is an approximately linear function of Bo (Cordue, unpublished 
results), so the selected values of Bmrren, are approximately uniformly distributed.) 

4. Results and discussion 

4.1 Estimator performance comparison 

Although only approximate information indices were calculated, strict comparisons 
between the information indices of different estimators can be made because in each 
case the same Bos have been used with the same simulated data (on each of the 100 runs 
at each Bo). 

The information indices for the standard MIAEL estimator and the two double MIAEL 
estimators for Bo, using the baseline model, are very similar between estimators for each 
of the relative abundance index patterns (Table 6). The double MIAEL estimators are 
always as good as, or slightly better than, the standard MIAEL estimator. For the same 
scenarios under the alternative catch history model, the double MIAEL estimator (with 
q E [S. 101) is also slightly better than the standard MIAEL estimator (Table 7). 

When the operating model differs from the estimation model. under either non-average 
year class strength assumption, the double MlAEL estimator performs the same as, or 
slightly worse than, the standard MIAEL estimator (Tables 8 and 9). 



Thus, in comparative terms the double MIAEL estimator was slightly better than the 
standard MIAEL estimator when the estimation model was "correct" and slightly worse 
when the estimation model was "incorrect". It appears that any differences in estimation 
performance are likely to be small. However, only a few operating models were tested, 
so it may be that there are circumstances under which one estimator could substantially 
outperform the other. 

4.2 Resource survey frequency study 

For this study, comparisons of the information indices of the standard MIAEL 
estimators of BO and B,",,, were made between different index patterns (see Table 5). 
The questions are: how much information is lost when surveys are conducted triennially, 
or biennially, instead of annually?; how much more information is gained when absolute 
abundance indices are obtained instead of relative abundance indices?; and how robust 
are the answers to these questions if the estimation models are incorrect? 

The information indices calculated to answer these questions are only approximate and 
their precision must be taken into account when interpreting the results. The precision of 
the calculated information indices decreases with magnitude. Smaller information 
indices correspond to expected loss functions which vary greatly with Bo and so have 
higher "spatial variability" than larger information indices. To get an idea of the 
precision of the indices, approximate radius were calculated for 95% confidence 
intervals on the information indices for the research scenarios on the baseline model. 
These varied from 1 to 10% (e.g., an information index of 9% was * 7%, and an 
information index of 76% was 2%). 

Under the baseline model, the information indices for the standard MIAEL estimator of 
Bo increase steadily as increased numbers of relative abundance surveys are used in the 
index pattern (see Table 6). This pattern of increase is plausible, but as the information 
indices are all very low, their precision is not adequate to infer any real trend. Under the 
alternative catch history model, triennial, biennial, or annual surveys all perform 
similarly and provide definite improvement over the 1997 assessment (see Table 7). 
When non-average year class strengths are used in the operating model (with the 
baseline catch history) all the information indices are near to zero (see Tables 8 & 9) and 
the actual information indices are somewhat lower than the reported information indices 
(Table 10). 

For estimation of B,,,,,,,, annual surveys are probably best under the baseline model (but 
all the information indices are very low) and are definitely best for the alternative catch 
history (Table 1 1). Also, for the alternative catch history, triennial surveys are as good as 
biennial surveys with both giving a large improvement over the 1997 assessment (Table 
1 1 ) .  

When estimating B,.,,,,,, with the operating model using the lower than average year 
class strengths. there are only minor differences between the reported and actual 
information indices (Table 12). However. when the above average year class strengths 
are used, there are very large differences between the reported and actual information 
indices. with the actual information indices all negative. and becoming more so with an 



increasing number of surveys (Table 12). This is a good demonstration of two points 
that are intuitively obvious. First, with only relative abundance indices available and no 
data on year class strengths, current biomass is generally more difficult to estimate than 
virgin biomass. Second, incorporating more data into an estimation procedure does not 
guarantee improved estimation performance; an incorrect interpretation of data (because 
of faulty assumptions) can mean that the larger the data set, the worse the error. 

For both the baseline and alternative catch history models, when absolute biomass 
indices are available the information indices for the standard MIAEL estimators of Bo 
and Barren, are much higher than those achieved using only relative abundance indices 
(Tables 13 and 14). For Bo, two absolute indices gave slightly higher information indices 
than only one absolute index (Table 13). For B,,,,,, the information indices were very 
similar, independent of the number of absolute indices (Table 14). 

Under the non-average year class strength operating models, when estimating Bo, the 
actual information indices are still fairly high in comparison to those obtained using only 
relative abundance indices (reported or actual), but they are much lower than the 
reported information indices (Table 15). Also, the estimator performs better with the 
higher, rather than the lower, than average year class strengths. The same cannot be said 
when estimating BCurren, (Table 16). Under the lower than average year class strengths 
the information indices are much lower than those reported, but they are still positive. 
However, for the higher than average year class strengths, the information indices are 
spectacularly negative, with the worst information indices corresponding to the patterns 
which include one or two absolute indices (Table 16). 

The results for the above average year class strengths are due to a combination of 
factors. The higher than average year class strengths mean that the minimum bound on 
Bo is lower in the operating model than the estimation model (see Table 4). This in turn 
leads to a lower minimum bound on B,,,,,. Hence MIAEL estimators will tend to over- 
estimate both Bo and Barren,. Because a proportional squared error loss function is used, 
a consistent positive bias is more damaging than a consistent negative bias. The large 
negative information indices obtained when the absolute indices are included are 
somewhat surprising. Intuitively one would expect not too bad a result with an absolute 
abundance index in the current year. However, the weightings given to individual 
indices in the sum of squares is obviously important, particularly when the wrong year 
class strengths are being used in the estimation model. That is, when the year class 
strengths are wrong, better performance will probably be achieved in estimating current 
biomass by giving more weight to recent or current absolute abundance indices, rather 
than any relative abundance indices (whose correct interpretation depends on accurate 
knowledge of the year class strengths). 

5. Conclusions 

The results of the estimator performance study suggest that there may be little to choose 
between the standard and double MIAEL estimators. However, only a few operating 
models were tested. so it may be that there are circumstances under which one estimator 
could substantially outperform the other. 



When the assumed estimation model was identical to the operating model it generally 
followed that increased survey frequency or the inclusion of absolute abundance indices 
improved the performance of estimators. However, when the estimation and operating 
models differed, the inclusion of more data, or absolute abundance indices, sometimes 
resulted in vastly inferior estimator performance. This lack of robustness, specifically to 
errors in assumed year class strengths, suggest that it is unlikely that any useful rules of 
thumb for determining appropriate survey frequencies could be derived for MIAEL 
estimators which assume known year class strengths (unless robustness considerations 
are ignored). Whenever possible, planning of future survey work should be based on 
individual analyses of each relevant stock (including testing the robustness of the results 
to estimation model errors). 

There are some other lessons to be learnt fiom this work. It appears that the estimation 
of virgin biomass is quite robust to year class strength errors in the estimation model, 
although the level of certainty is likely to be over-stated. However, the estimation of 
current biomass can be very sensitive to year class strength errors. When both absolute 
and relative abundance indices are available for estimation of current biomass, it appears 
that the best results may be obtained by placing most weight on the most recent absolute 
abundance index. 
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Table 1: Baseline model parameters: biological 

Maximum age: 20 years 
Steepness: 0.9 
Spawning season: 3 months 
Proportion of male larvae: 0.5 
Proportion spawning: 0.8 

Corridor migration: 

Age: 1 2 3 
Proportion that move: 0.6 0.9 1 .O 

Maturity (proportion that mature): 

Age: 2 3 4 5 6 
Male: 0.1 0.5 0.8 1.0 1.0 
Female: 0.05 0.1 0.5 0.8 1.0 

Growth, natural mortality, and length-weight parameters: 

M (yr.') L ,  (cm) K (yr-I) t o  (yr) a b 
Male: 0.30 92.6 0.261 -0.5 0.006 2.85 
Female: 0.25 104.0 0.213 -0.6 0.006 2.85 

Table 2: Baseline model parameters: fishery 

Home ground selectivity: 

Age: 1 2 3 4 5 6 7 8' 
Male: 0.1 0.2 0.5 0.8 1.0 1.0 0.9 0.8 
Female: 0.1 0.2 0.5 0.8 1.0 1.0 0.9 0.8 

Spawning ground selectivity: 

Age: 3 4 5 6 7 8' 
Male: 1.0 1.0 1.0 1.0 1.0 1.0 
Female: 1.0 1.0 1.0 1.0 1.0 1.0 

Maximum catch to biomass ratios: 

Pre-spawning season: 0.6 
Spawning season: 0.8 



Table 3: The baseline and alternative catch histories, and alternative year 
class strengths (YCS) used in operating models when they differed 
from the estimation model. In the estimation models year class 
strengths were all equal to 1 

Baseline catch history Alternative catch history 

Pre-spawning 
Year catch ('000 t) 
1972 0 
1973 0 
1974 0 
1975 0 
1976 0 
1977 0 

Spawning 
catch ('000 t) 

5 
5 
5 

10 
3 0 
60 

5 
18 
20 
25 
25 
30 
40 
34 
8 2 

158 
240 
192 
175 
164 
112 
102 
114 
8 1 
7 8 

100 
100 
100 
100 
100 
100 
100 

Pre-spawning 
catch ('000 t) 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
8 

1 2. 
15 
15 
15 
15 
15 
15 
15 
15 
15 
I5 
15 
IS 

Spawning 
catch ('000 t) 

5 
5 
5 

10 
30 
60 

5 
18 
20 
2 5 
25 
3 0 
40 
3 4 
5 0 
5 0 
5 0 
5 0 
50 
5 0 
5 0 
5 0 
5 0 
50 
5 0 
50 
5 0 
5 0 
50 
50 
50 
50 

YCS (a) 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0.8 
0.8 
0.5 
0.5 
1.2 
1.2 
0.8 
0.8 
0.5 
0.5 
1.2 
1.2 
0.8 
0.8 
0.5 
0.5 
1.2 
1.2 
0.8 
0.8 

1 
1 

YCS (b) 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1.8 
1.8 
1.2 
1.2 
0.8 
0.8 
1.8 
1.8 
1.2 
1.2 
0.8 
0.8 
1.8 
1.8 
1.2 
1.2 
0.8 
0.8 
1.8 
1.8 

1 
1 



Table 4: Lower and upper bounds on virgin biomass (go) used in the 
operating and estimation models 

Operating model Estimation model 

Lower bound Upper bound Lower bound Upper bound 
('000 000 t) ('000 000 t) ('000 000 t) ('000 000 1) 

Baseline 0.7 2.0 0.7 2.0 

Alternative 
catch history 0.36 1.2 0.36 1.2 

Lower YCS 0.9 2.0 0.7 2.0 

Higher .YCS 0.6 2.0 0.7 2.0 

Table 5: The index patterns considered. The years in which observations 
are obtained is given for each pattern. Years appearing in bold 
characters denote absolute indices, other indices are relative. The 
relative indices are assumed to continue the existing times series 
(1992 to 1996 inclusive) 

Index years (beyond 1996): 

Annual: 1997 1998 1999 2000 2001 2002 
Biennial: - 1998 - 2000 - 2002 
Triennial: - - 1999 - - 2002 
Absolute 1 : - 1999 - - 2002 
Absolute 2: - - 1999 - 2002 



Table 6: Baseline model: comparison of information indices for MIAEL 
estimators of Bo for various index patterns. Indices are given for 
the standard MIAEL estimator and the "double" MIAEL 
estimator for two different assumptions about the proportionality 
constant q: (a) q E [.1,2], (b) q E [S, 101 

Double Double 
MIAEL MIAEL (a) MIAEL (b) 

Assessment Index pattern information information information 
year (beyond 1 996) index (%) index (%) index (%) 

1997 1 2 2 
2003 triennial 5 5 6 
2003 biennial 9 9 10 
2003 annual 14 15 16 

Table 7: Alternative catch history: comparison of information indices for 
MIAEL estimators of Bo for various index patterns. Indices are 
given for the standard MIAEL estimator and the "double" 
MIAEL estimator with the assumption that the proportionality 
constant q E 1.5, 101 

Double 
MIAEL MIAEL 

Assessment Index pattern information information 
year (beyond 1996) index (%) index (%) 

1997 5 7 
2003 Triennial 26 29 
2003 Biennial 2 6 29 
2003 Annual 30 32 



Table 8: Lower than average year class strengths in the operating model: 
comparison of information indices for MIAEL estimators of Bo for 
various index patterns. Indices are given for the standard MIAEL 
estimator and the "double" MlAEL estimator with the assumption 
that the proportionality constant q E [S, 101 

Double 
MIAEL MIAEL 

Assessment Index pattern information information 
year (beyond 1996) index (%) index (%) 

1997 -4 -5 
2003 triennial -2 - 3 
2003 biennial 0 0 
2003 annual 3 2 

Table 9: Higher than average year class strengths in the operating model: 
comparison of information indices for MIAEL estimators of Bo for 
various index patterns. Indices are  given for the standard MIAEL 
estimator and the "double" MIAEL estimator with the assumption 
that the proportionality constant q E [S, 101 

Double 
MIAEL MIAEL 

Assessment Index pattern information information 
year (beyond 1996) index (%) index (%) 

1997 - 2 2 
2003 triennial - 1 -2 
2003 biennial 1 0 
2003 annual - 5 - 7 



Table 10: Comparison of actual and reported information indices for the 
standard MIAEL estimator of Bo for various index patterns. The 
actual indices are for operating models that differed from the 
estimation model: (a) lower than average year class strengths in 
the operating model; (b) higher than average year class strengths 
in the operating mode1 

Reported 
MIAEL 

Assessment Index pattern information 
year (beyond 1996) index (%) 

1997 1 
2003 triennial 5 
2003 biennial 9 
2003 annual 14 

Actual 
MIAEL 

information 
index (%) (a) 

-4 
-2 
0 
3 

Actual 
MIAEL 

information 
index (%) (b) 

2 
- 1 
1 

-5 

Table 11: Comparison of information indices for the standard MIAEL 
estimator of Bmrrent for various index patterns. Indices a re  given 
for (a) the baseline model and (b) the alternative catch history 

MIAEL MIAEL 
Assessment Index pattern information information 

year (beyond 1 996) index (%) (a) index (%) (b) 

1997 - 4 3 
2003 Triennial 5 3 1 
2003 biennial 9 2 8 
2003 annual 12 40 



Table 12: Comparison of actual and reported information indices for the 
standard MIAEL estimator of Bmrrent for various index patterns. 
The actual indices are for operating models that differed from the 
estimation model: (a) lower than average year class strengths in 
the operating model; (b) higher than average year class strengths 
in the operating model 

Reported Actual 
MIAEL MIAEL 

Assessment Index pattern information information 
year (beyond 1996) index (%) index (%) (a) 

1997 4 -6 
2003 triennial 5 2 
2003 biennial 9 5 
2003 annual 12 9 

Actual 
MIAEL 

information 
index (%) (b) 

Table 13: Comparison of information indices for the standard MIAEL 
estimator of Bo for various index patterns. Indices are given for (a) 
the baseline model and (b) the alternative catch history 

Assessment 
Year 

2003 
2003 
2003 
2003 

MIAEL 
Index pattern information 

(beyond 1996) index (%) (a) 

Annual 
Triennial 

Absolute 1 
Absolute 2 

MIAEL 
information 

index (%) (b) 

Table 14: Comparison of information indices for the standard IAEL 
estimator of B,,,rr,,l for various index patterns. Indices are given 
for (a) the baseline model and (b) the alternative catch history 

MIAEL MIAEL 
Assessment Index pattern information information 

year (beyond 1996) index (%) (a) index (%) (b) 

2003 annual 12 40 
2003 triennial 5 3 1 
2003 absolute 1 83 8 2 
2003 absolute 2 8 2 86 



Table 15: Comparison of actual and reported information indices for the 
standard MIAEL estimator of Bo for various index patterns. The 
actual indices are for operating models that differed from the 
estimation model: (a) lower than average year class strengths in 
the operating model; (b) higher than average year class strengths 
in the operating model 

Reported Actual Actual 
MIAEL MIAEL MIAEL 

Assessment Index pattern information information information 
year (beyond 1996) index (%) index (%) (a) index (%) (b) 

2003 annual 14 3 -5 
2003 triennial 5 -2 - 1 
2003 absolute 1 76 2 5 4 7 
2003 absolute 2 82 2 8 53 

Table 16: Comparison of actual and reported information indices for the 
standard MIAEL estimator of Bcumnt for various index patterns. 
The actual indices are  for operating models that differed from the 
estimation model: (a) lower than average year class strengths in 
the operating model; (b) higher than average year class strengths 
in the operating model 

Reported Actual Actual 
MIAEL MIAEL MIAEL 

Assessment Index pattern information information information 
year (beyond 1996) index (%) index (96) (a) index (%) (b) 

2003 annual 12 9 -253 
2003 triennial 5 2 -88 
2003 absolute 1 8 3 20 -5 14 
2003 absolute 2 82 2 9 -4 10 



Appendix 1: The single stock population model 

In the population dynamics model, fish are categorised by ground, sex. age, and 
maturity. Given the level of complexity of the categorisation i t  is best to present the 
mathematical equations in a very descriptive form using categorical variables. 
Categorical variables are given in italics and specific members of a category (except 
ages) are given in bold italics. 

The following abbreviations are used in the category member names: 

"spawning" = sp, "home" = hm, "corridor" = cur, "female" =fern, "immature" = 

imm, "mature" = mat, "maximum age" = amnx. 

The categorical variables and their associated categories are: 

ground { sp, hm, tor 1 
sex ( male, fem } 

age { 0, 1, ... , a m a x )  
maturity { imm, mat ) 

The numbers of fish in each category in year i and cycle point j are denoted by 
N,, (ground, sex, age, maturity). Unless otherwise stated, an equation involving one 
or more categorical variables is valid for each member of the associated category or 
categories (where the particular combination of values is valid; an example of an 
invalid combination is "mature fish aged 0 years"). Equations are applied 
consecutively. Note, equations of the form "A += B" are shorthand for "A = A + B .  
Similarly for "A -= B" and "A *= B .  

Stage 1: Beginning of fishing year 

Nit/ ( ground, sex, age, maturity) = N,.l,s( ground, sex, age, m a t u r i ~ )  

Stage 2: Corridor migrations and maturity 

N,,? ( ground, sex, age, maturity) = Ni,, ( ground, sex, age, maturity) 

(a) Larvae move from the spawning ground to the corridor. 

N,,2 (cor, sex. 0. imm) = Ni,2 (sp, sex, 0, imm) 

Ni,2 (sp, sex, 0, imm) = 0 

(b) Some juveniles move from the corridor to the nursery (home). 

Ni,2 (hm, sex, age, imm) += nurs(age) " Ni.2 ( c o ~ ,  sex, age, imm) 



N,J (cur, sex, age, imm) -= nurs(age) * N,,2 (cur, sex, age, imm) 

(c) Some juveniles mature (and become adults). 

For age 2 1 

Ni.2 (hm, sex, age, mnt) += m - og( sex. age) * Ni,2 (lrm, sex, uge, imm) 

Ni.2 (hm, sex, age, imm) -= m - og( sex, age) * N,,? (ftm, sex, age, imm) 

Stage 3: Pre-spawning season: first half 

NiS3 (ground, sex, age, maturity) = Ni,2 (ground, sex, age, maturity) 

(a) Natural and fishing mortality are applied to fish in the home ground. 

For age 2 1 

Ni.3 (hm, sex, age, maturity) *= exp[ -t * ( F(sex, age) + M(sex) ) ] 

where the fishing mortalities F(sex, age) are calculated from the Baranov catch 
equation using the selectivities sel-hm(sex, age) and the pre-spawning season catch. 
The time period t in this case is 0.5 * ( 1 - sp - length ). 

(b) Natural mortality is applied to fish in the corridor. 

For age 2 1 

N,,3 (cur, sex, age, maturity) *= exp[ -t * M(sex) ] 

Stage 4: Pre-spawning season: second half 

Ni,4 ( ground, sex, age, maturity) = N,.3 ( ground, sex, age, maturity) 

(a) Natural and fishing mortality are applied to fish in the home ground. 

For age 1 1 

N, , (h  m, sex. age, mcrturity) * = exp [ -t * ( F(sex, age) + M(sex) ) ] 

where the F(sex uge) and t are as in Stage 3. 



(b) Natural mortality is applied to fish in the corridor. 

Forage2 1 

Nl,l (cor, sex, age, muturity) *= exp[ -t * M(sex) ] 

Stage 5: Ageing and spawning migration 

N, 5 (ground, sex, age, marurity) = N,,4 (ground, sex, age, maturity) 

(a) Fish and larvae age 1 year. 

N,,J (ground, sex, amnx, maturity) += .Nl, j (ground, sex, amax - 1, maturity) 

For age = (amax - 1 )  down to age = 1 

N,,J (ground, sex, age, maturity) = N,, (ground, sex, age - 1 ,  maturity). 

Also, 

N,,J (ground, sex, 0, imm) = 0 

(b) Some adults move from the home ground to the spawning ground. 

Ni,S (sp, sex, age, mat) = spawnq * N,,J (hm, sex, age, mat) 

N,,J (hm, sex, age, mat) -= spawnq * Ni.5 (hm, sex, age, mat) 

Stage 6: Spawning season: first half 

Nl.b (ground, sex, age, maturity) = N,, (ground, sex, age, maturity) 

(a) Natural and fishing mortality are applied to fish in the spawning ground. 

For age 2 1 

N,,6 (sp, sex, age, maturity) *= exp[ -t * ( F(sex, age) + M(sex) ) ] 

where the fishing mortalities F(.sex, age) are calculated from the Baranov catch 
equation using the selectivities sel-sp(sex, uge) and the spawning season catch. The 
time period r in this case is 0.5 * sp-length . 

(b)  Natural mortality is applied to fish in the corridor and the home ground. 

For age 2 1 and ground E { cor. hm ) 



N1,6 (ground, sex, age, maturity) *= exp[ -t * M(sex) ] 

(c) Larvae are created in the spawning grounds. 

larvae, = R, * virginR * jbio / [ ulpha + beta * fbio ] 

where jbio is the biomass of the females present in the spawning ground, virginR is the 
number of larvae needed to maintain deterministic equilibrium prior to fishing, and 
ulphcr. betu are the parameters of the Beverton-Holt stock-recruit relationship given by 
steep. 

(d) Larvae are split by sex. 

larvae,(male) = p-male * larvae, 

larvae,(fem) = ( 1 - p-male ) * larvae, 

Stage 7: Spawning season: second half 

N,,7 (ground, sex, age, maturity) = N,.6 (ground, sex, age, maturity) 

(a) Natural and fishing mortality are applied to fish in the spawning ground. 

For age 2 1 

where the F(sex, age) and t are as in Stage 6. 

(b) Natural mortality is applied to fish in the corridor and the home ground. 

For age L 1 and ground E { cor, hm ) 

Nl, 7 (ground, sex, age, maturity) *= exp[ -t * M(sex) ] 

Stage 8: End o f  fishing year 

N1.8 (ground, sex, age, maturily) = N,.J (ground, sex, age, maturity) 

(a) Adults return from the spawning ground to their home ground. 

N, 8 (ltm, sex, age, mot) += NI,s (sp,  sex, age, mat) 

N, 8 (sp, sex, uge, mat) = 0 



Appendix 2: The least squares and maximum likelihood estimators 

Least squares 

In general, a least squares estimate is a vector of parameter values which minimises a 
weighted sum of squared differences between the observations and the predicted 
values (as given by the vector of parameters when input into the model). The form of 
the sum of squares used for the least squares estimator in this paper is: 

where K indexes all observed values (biomass indices) and for k E K, Xk is the kth 
observation, Pk is the kth predicted value, and wk is the kth weight. The weights for 
each observation were calculated using the method described below. 

Each observation has a "source code": observations with the same source code are 
theoretically derived from the same "source" (e.g., a series of trawl surveys-the 
source-giving as observations a time series of biomass indices). Let S be a subset of 
K which indexes observations with a particular source code, then for s E S, 

where u is a specified source weight, y is the number of years for which there are 
observations from the source, c, is a specified c.v., and 

Each observation also has a "q code": observations with the same q code are assumed 
to belong to a relative time series. Let Q be a subset of K which indexes observations 
with a particular q code, then for each j E Q, 

where q is a proportionality constant and T, is the predicted value before scaling. The 
value of (1 which minimises the sum of squares can be found analytically and is equal 
to: 

Maximum likelihood 

In general, a maximum likelihood estimate is a vector of parameter values which 
gives the highest "probability" (or likelihood) of observing the actual observations. 



Maximum likelihood estimators are usually obtained by minimising the negative log 
likelihood (which is equivalent to maximising the likelihood). To derive the log 
likelihood of the observations it is necessary to specify the statistical distribution of 
the observations. 

For a time series of relative biomass indices, let K index the observations in the time 
series, then for k E K it is assumed for observation Xk that Xk = q T k ~ k  where 
~k - N(1, ck2), q  is a proportionality constant, Tk is the true value, and ck is a given c.v. 

All time series are considered to be mutually independent, so that the combined log 
likelihood is the sum of the individual log likelihoods. For a time series of biomass 
indices (indexed by K as above), the non-constant portion of the negative log 
likelihood is: 

If the time series is relative (and hence q is unknown), the value of q which minimises 
the above equation can be found analytically and it is equal to: 

where 
1 1 xi 

m, =-c% and m, =-xw 
n k , J k c , Z  n k s ~  k  k 

and n is the cardinality of K. 

Appendix 3: MIAEL estimation of qB 

Suppose that X is a relative biomass index obtained from a survey of a population 
with true biomass B. Let the proportionality constant be q and assume a multiplicative 
error structure: 

where E(e) = 1, Var(e) = 02. and 02 is assumed known. 

The index ,Y can be considered as an estimator of q B. A best p MIAEL estimator (see 
Appendix 4) of q B based on .Y can be derived as follows. 

Let, 



where k is the best k (or best constant) estimator of q B E [ a, b 1. 

The best p estimator is found by deriving the p which minimises the Integrated 
Average Expected Loss of Y. Using a proportional squared error loss function gives: 

and, for z = q B E [ a, b ] the proportional mean squared error of Y is: 

PMSE(Y,z) = [ p 2 ~ a r ( X ) + ( p ~ ( X ) + ( 1  - p ) k - z ) 2 ] l z 2  

Now, E(X) = q B and Var(X) = ( q B o )? which depend only on z = q B. Hence, 
PMSE is equivalent to average PMSE. 

On expansion and simplification, 

PMSE(Y,z) = [ p 2 ( 0 2 +  1 ) - 2 p  + 1 ] - [2(1 - p ) * k / z ] +  [(I -p )k lz ]2  

Integrating over the interval [a, b] with respect to z gives 

IPMSE (Y )  = .f @. b) -f (p, a) 

where 

f @ , z )  = [ p 2 ( d +  1 ) - 2 p  + l ] r  - [2(1 - P ) 2 k ] ~ n ( z ) - ( l  - p ) 2 p ~ z  

Finally, differentiating with respect top ,  setting the result equal to zero, solving for p 
and substituting k gives: 

where 

Note, the reassuring properties of the expression for p: 02 = 0 gives p = 1 (and hence 
Y = X), and o2 = co gives p = 0 (and hence Y = k). 



Appendix 4: MIAEL estimation, the information index, and bestp estimators 

This appendix gives the reader who is unfamiliar with MIAEL estimation a detailed 
introduction to the motivation and definitions of the method. For further details on 
MIAEL estimation see Cordue ( 1  998) and for besrp estimators see Cordue (1  995). 

Decision theory and point estimation 

Point estimation can be considered as a special case of decision theory (Wald 1950, 
Fergusson 1967, Berger 1985). In the general decision problem there is an unknown 
"state of nature" and a decision maker. The decision maker has to choose between a 
number of alternative actions, each of which will result in a "loss" depending on the true 
state of nature. The decision maker may conduct an experiment (i.e., observe some 
random variable whose distribution (hopehlly) depends on the state of nature) in order 
to help them decide on the "best" action. 

For example, a classic statistical problem is estimating the probability of getting "heads" 
fiom the single toss of a given coin (a special case of a Bernoulli experiment). The 
unknown "state of nature" is the probability of getting "heads". The "actions" available 
to the decision maker are their possible choices for the estimate: any real number from 0 
to 1 inclusive. The "loss" in this case is estimation loss; presumably the fkther away that 
the estimate is fiom the true value, the greater the loss. The usual experiment conducted 
by the decision maker is to toss the coin n times, and record the total number of times 
that "heads" occurs. On the basis of this observation, they choose their estimate (action). 

In more precise terms, for the general decision problem, there is an unknown state of 
nature 8 contained in a parameter space O. The decision maker can observe a random 
variable X which has observable values in Obs(X) (with a generic observation denoted 
by x), and probability density functionp(x 18). An action a E A must be chosen, and this 
will result in a non-negative loss given by the function L : O x A + R. The solution to 
the decision problem is to find a decision rule d :  Obs(X) + A, which minirnises (in 
some sense) the expected loss Ex( o[ L(B,d(X)) 1. (Ex[ denotes the expectation with 
respect to X assuming that 8 is the true state of nature.) The expected loss 
Ex[ 4 L(B,d(X)) ] is called the risk function of d, and will be denoted here by R(8,d). 

In the general point estimation problem, estimating g(0) for some given hnction g, the 
actions consist of the possible choices for the estimate, so that d(X) is simply an 
estimator (and for x E Obs(X), d(x) is an estimate). The loss function will then be a 
function of g(8) and d(X) and should in some sense measure the "distance" between 
them, with increasing loss as the "distance" increases. An estimator d(X) which in some 
sense minimises R(0,6), is then minimising the expected "distance" between g(0) and 
d(X). For example, a commonly used loss hnction is squared error [ g(0) - d(X)12, which 
results in mean squared error as a risk function. An optimal estimator in this case, then, 
minimises (in some sense) mean squared error. 

Continuing with the coin tossing example, rather than estimating 8, the probability of 
getting "heads". it may be desired to estimate a function of 8, say e2. Also, the decision 
rule d, might be "divide the total number of heads observed by the number of trials, and 
square the result". That is, d(X) = (x/n12 where Xis the total number of heads observed in 



n trials. If the loss function L is squared error, then L(0,d(X)) = [ 0' - y l n 2  12. The risk 
2 2 2  function of the estimator ( ~ l n ) ~  is E,YI e [  e2 - X In ] . 

The general formulation is intuitively appealing, but there is the difficulty of deciding in 
what sense the risk hnction is to be minimised. In general there will not be an estimator 
with minimum risk for all values of 8. (Consider for example, estimating 8 E [0,1] with 
a squared error loss hnction. For any constant k E [0,1], d(X) = k has zero risk when 
8 = k, hence there cannot be an estimator of 0 with uniformly minimum mean squared 
error.) Three main approaches have been used: imposition of a special property to form a 
"class" of estimators within which uniformly minimum risk is sought (e.g., considering 
only unbiased estimators); minimising the maximum risk (minimax estimation); and 
minimising a weighted average risk (e.g., Bayes estimation. where the weighting is 
given by the prior distribution of O - although, of course, Bayes estimation can be 
developed more simply and independently of the approach described here). MIAEL 
estimation is related to Bayes estimation, ,but its formulation differs because the 
averaging is done over g(0) rather than 0 (note, g(0)  = ( g(0) I 0 E 0 )  ). 

MIAEL estimation 

The main idea behind MIAEL estimation is that since g(0) is the object of interest, the 
minimisation of estimation risk should be done in the g(0) domain (i.e., within g(0)  
rather than O). Also, a uniform weighting is used in the integration of risk (across g(O)) 
because, inasmuch as g(8) is unknown, there is little reason to require preferential 
estimator performance in any particular region of g(O). The aim is to minirnise the 
"average" risk, given the estimation losses encapsulated in the specified loss function. 

The integrated average expected loss of d(X) when estimating g(8) with loss function L 

where 

and if g-l(z) is finite, then integration over g-'(r) is interpreted as simple summation. If 
d E D is such that for every d '  E D, I [d '(41 1 I [d(a] then d(X) is a MIAEL estimator 
within the class D. 

This definition requires some claritication. In the MIAEL acronym, "EL" denotes 
Expected Loss (expectation over X of the loss function). The "A" is Averaging of 
Expected Loss for each point in g(O). For each -: E g(O), the Average Expected Loss is 
given by the ratio of the integrals in the definition of I[d(,X')]. Since z E g(O) and 



4 E g-'(z). there exists 0 E O : g($) = dB). The denominator in the ratio is a "count" of 
the number of points in g-'(z) (explicitly if g"(z) is finite) and the numerator is the "sum" 
of the expected losses. Note, that if g is 1 to 1 then g-'(z) contains only a single point, and 
the "A" is redundant. 

In the coin tossing example, if 0 or 0' were being estimated, then g is 1 to 1 (as 
0 E [0,1]) and no averaging of expected losses occurs. However, if g(8) = 8(1 - 8) was 
being estimated, then g(O) = [0,114] and for any z E [0,1/4], gl(z) = { to, 1 - to ) where to 
is a solution to z = 8(1 - 8). Hence, for every point in g(O), the ratio of the integrals is an 
average of exactly two expected losses. Note, that there is no guarantee that R(to,d) = 

R(l - to, 6). In general, the risk of a decision rule is a function of 8, not g(0). 

Returning to the general case, note that fld(X)] does not necessarily exist (it may be 
infinite) and hence for some classes a MIAEL estimator may not exist. If a MIAEL 
estimator does exist it may not be unique. However, in almost every practical fisheries 
application there will be sufficient ancillary information available to allow 8 and g(8) to 
be bounded. In that case, MIAEL estimators within many general classes will exist and 
be unique within the class. Also, in some circumstances, a global MIAEL estimator will 
exist (see theorems 1-3 in Cordue 1998). 

An information index 

Point estimates by themselves are sometimes not particularly useful to fishery managers. 
It is generally desirable to include some measure of the uncertainty of an estimate. 
Usually, this is done by providing a confidence interval at some high level of confidence 
(traditionally 95%, more recently 90%). The confidence interval approach is of limited 
value in some fisheries applications, particularly in "risk" analysis, where confidence 
intervals on "risk" (if they were ever calculated) would often include the interval [0,1]. If 
MIAEL estimation is used then a natural measure of estimator uncertainty can be 
provided by comparing the relative performance of the MIAEL estimator which uses the 
observations and the MIAEL estimator which does not. 

Let D be a class of estimators (based on X, estimating g(0), with loss function L), and let 
the information index of d E D be defined as 

where K (called the best k estimator) is the MIAEL estimator of g(8) (under loss 
function L) before the experiment is observed (i.e., when no observations are available). 
If D contains a MIAEL estimator M(X), then for every u' E D, Info(A4) 2 Info(d). 

If X has a distribution which does not depend on 8 then Info[A 5 0 (since Qd(X)] 2 fllk;l). 
Also. as estimation losses cannot be negative, for every d E D fld(X)] 2 0. Hence, an 
information index (as defined) is always less than 1 ,  and equals 1 if and only if fld(X)] = 

0. Note that provided K E D, lnfo[i\,fl is always in the interval [0,1]. The MIAEL 
estimator K can easily be found for a squared error loss function (and other simple loss 
functions). In  the case when g(O) = [a,b] with a squared error loss function, 



K =  (a + b)/2. (For K under proportional squared error, see Appendix 3.) Under fairly 
general conditions, it is always the case that K = k for some k E g(O) (see theorem 1 in 
Cordue 1998). 

The best p estimator 

Finding a MIAEL estimator from the class of all estimators is often difficult or 
impossible. To find a MIAEL estimator for a particular problem it is often necessary 
to construct a restricted class of estimators and determine the MIAEL estimator within 
the class. One way to construct a class of estimators is to build it around a standard 
estimator. derived from a method such as least squares or maximum likelihood. This 
is how "best p" estimators are constructed; they are MIAEL estimators within 
particular classes of estimators built from a "base" estimator. 

Continuing with the notation above, let 

for some estimator d(X) where K is the best k estimator. The MIAEL estimator in the 
class P is called a besl p estimator; it is derived from the base estimator d ( 4 .  Note, 
both d(X) and K are in the class P, and that because K E P it follows that the 
information index of the MIAEL estimator is between 0 and 1.  


