
Prepared by: 
Mike Joy 
Ecology Group &  
Centre for Freshwater Ecosystem Modeling and Management 
Institute of Natural Resources 
Massey University 
 
 
For: 
Environment Waikato  
PO Box 4010 
HAMILTON EAST 
 
ISSN: 1172-4005 
 
May 2005 
 
 
Document #:  1058758v2 

Environment Waikato Technical Report 2006/07    
 
 
 
 
 
 
 
 
 
 
 

A Predictive Model of Fish 
Distribution and Index of 
Biotic Integrity (IBI) for 
Wadeable Streams in the 
Waikato Region 
 
 
 
 
 
 





Doc # 1058758/v2  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Peer reviewed by: 
Dr Kevin Collier Initials  Date 3 March 2006 

Approved for release by: 
Dr Vivienne Smith Initials  Date 5 March 2006 
 
 
 
 
 
 
 
 
 
 





Doc # 1058758/v2 Page i 

Table of Contents 
Executive Summary iii 

1 Introduction 1 
1.1 Background 1 
1.2 Using artificial neural networks for spatial modelling 1 

2 Methods 2 
2.1 Predictive model construction 2 
2.2 Data sources 2 

2.2.1 Fish 2 
2.2.2 Habitat 7 

2.3 Model architecture and number of variables 8 
2.4 Validation with independent data 8 
2.5 Model evaluation 8 
2.6 Quantifying predictor variable contributions 8 
2.7 Sensitivity analysis 9 
2.8 Predictive IBI 9 

3 Results 9 
3.1 Network architecture and variables 9 
3.2 Model evaluation 9 

3.2.1 Species comparison 9 
3.2.2 Assemblage comparison 11 

3.3 Predictor variable importance 11 
3.4 Sensitivity analysis 13 

4 Discussion 16 
4.1 Assemblage-environment relationships 16 
4.2 Species-environment relationships 18 
4.3 Limitations of the predictive model 18 
4.4 Future data requirements 18 

References 19 

Appendix 1: Technical details on model construction validation and evaluation 
from Joy & Death (2004). 21 

Appendix 2: FWENZ variables used in model construction. 23 
 

List of Figures 
Figure 1: Flow chart for predictive IBI development. 3 
Figure 2: Map showing the predicted IBI scores over the Waikato Region for 

streams of 4th order and less. 4 
Figure 3: Proportion of the 1967 sites in the Waikato region at which each of 

the 13 modelled species were found. 6 
Figure 4: Site map showing the Waikato sample sites from the New Zealand 

Freshwater Fish Database. 7 
Figure 5: Crossvalidated Cohen’s kappa results for the 13 species see text for 

details on classifications. 10 
Figure 6: Histogram of crossvalidated simple matching coefficients for the 

match between observed and predicted fish assemblages using the 
ANN model at the 1967 Waikato sites. 11 

Figure 7: Sensitivity analysis for catchment phosphorus versus probability of 
occurrence.  In each plot (one for each taxon) all other variables were 
set to their mean values and the catchment proportions of the 
variable were varied over its full range.  Note the y-axis scales differ 
depending on prevalence of the taxa. 14 



Page ii Doc #1058758/v2 

Figure 8: Sensitivity analysis for the proportion of the stream segment in 
pastoral farming versus probability of occurrence.  In each plot (one 
for each taxon) all other variables were set to their mean values and 
the catchment proportions of the variable were varied over its full 
range.  Note the y-axis scales differ depending on prevalence of the 
taxa. 15 

 
 

List of Tables 
Table 1: Species list and relative abundance of species at the 2269 sites 

initially used from the NZFFDB. 5 
Table 2: Proportion of sites where each of the modelled species occurred and 

the critical threshold and area under curve (AUC) results for ROC 
analysis from N fold crossvalidation. 10 

Table 3: Ranking of importance of the 35 predictor variables from the River 
Environment Classification and Freshwater Environments of New 
Zealand databases used for predicting fish communities. 12 

Table 4: The 35 predictor variables from the River Environment Classification 
(REC) and Freshwater Environments of New Zealand (FWENZ) 
databases used for predicting fish communities grouped by upstream, 
segment and downstream influence. 17 

 
 



Doc # 1058758/v2 Page iii 

Executive Summary 
• A predictive model was developed for the wadeable streams (≤ 4th order) of the 

Waikato Region using existing fish presence/absence data. 
 
• The environmental variables used to generate the predictions came from two 

existing datasets that were collated in a GIS format from other existing databases. 
 
• The predictive model was extensively evaluated and iteratively optimised to 

maximise predictive accuracy. 
 
• The levels of accuracy for the model were good to outstanding and exceeded those 

from comparable North Island regional models. 
 
• The predictions from the model were then expanded out over the entire regional 

stream network to give a predictive map of fish assemblages. 
 
• These predicted fish assemblages were then used to create a predictive map of IBI 

scores for the wadeable streams over the entire region. 
 
• Notwithstanding the good evaluation results the model could be improved with 

more data, both more fish surveys and environmental data with higher resolution. 
 
• The current predictions can be used to develop predictive maps of the distribution 

of 13 freshwater fish species for mapped wadeable streams throughout the 
Waikato Region. 
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1 Introduction 
To model freshwater fish spatial occurrence in the Waikato Region data were extracted 
from the New Zealand Freshwater Fish Database (NZFFDB; McDowall and 
Richardson, 1983) and supplemented with data from recent surveys.  The fish 
assemblage data for each site were associated with their corresponding catchment 
level geospatial landuse, geomorphologic, and climatic data in a geographic 
information system (GIS) to predict fish occurrence in the region in wadeable streams 
(defined as less than or equal to 4th order as identified by the REC).  To predict the 
occurrence of each species at a site from a common set of predictor variables we used 
an artificial neural network, to produce a single model that predicts the entire fish 
assemblage at a site in one procedure.  After extensive development and evaluation, 
the predictive model was then extended to fill in the gaps between the surveyed sites 
using a GIS river network to give a spatial map of species probability of occurrence for 
the wadeable streams over the entire region.  The predictive map tool described here 
has been named Point-Click-Fish and has been developed for a number of New 
Zealand regions.  The predicted fish assemblages were then run through the Waikato 
Index of Biotic integrity (IBI) (Joy & Death 2004; Joy, 2005) to calculate the IBI score 
for each wadeable segment of the river network. 
 
The predictive maps of freshwater fish species distribution have been identified as an 
important tool for freshwater resource management in New Zealand (McLea & Joy, 
2004).  The maps allow non-specialist staff and others to instantly get information on 
the expected fish fauna for any site on any stream in the region.  This spatial 
occurrence data can also be linked to extra information such as conservation status 
and habitat requirements, such as the climbing ability of species with a high probability 
of being present (McLea & Joy, 2004).  The predictive IBI model has the potential for 
‘scenario modelling’ where different management options can be modelled and 
changes in biotic integrity mapped out over the regional stream network.   

1.1 Background 
This capability to accurately predict where fish are likely to occur on a regional basis 
has many potential uses within regional councils for bioassessment, biodiversity 
assessment, resource management and conservation.  The recent availability of a 
large database of geological, climatic and landuse information coupled with recent 
developments in computing power has made it possible to produce accurate maps of 
fish occurrence (Joy & Death, 2004).  The combination of large amounts of GIS 
landscape data and fish distribution records mean that New Zealand has an almost 
unique opportunity to pioneer this process as the cost of this GIS data would rule out 
this taking place overseas.   

1.2 Using artificial neural networks for spatial 
modelling 

Artificial neural networks have 2 main advantages over almost any other modelling 
approach currently available 1) they can model both linear and non-linear relationships 
and 2) they can model the entire assemblage in one model.    The neural network uses 
an iterative learning approach where, after each iteration (epoch), the difference 
between the predicted results and the actual results are compared and the 
mathematical relationship is updated each time based on minimising error (getting the 
answer right).  Thus, the learning process is similar to human learning.  For example 
when learning addition or multiplication, if you were not given the rules first, you would 
learn by looking for patterns.  Each time an example is given the pattern between the 
number being added and the answer is observed until a definite pattern is learned and 
can be applied to further examples (providing enough examples are given).  In the 
same way the neural network learns the relationship between the habitat variables and 
the fish presence/absence and develops an algorithm to classify new sites.  When the 
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network is presented with a new example (where the answer is unknown) it is able to 
make a prediction using the rules it has learnt from the previous examples.  Thus, in 
summary the patterns are learned from the fish/environment dataset given to ‘train’ the 
model.  After fine-tuning, the model is then presented with the data for the entire 
regional wadeable stream network and the predictions are made then mapped out over 
the region.  
 
This report outlines the development of a predictive model using data for 1967 
wadeable stream sites in The Waikato region.  The associations between fish 
assemblages at these sites and physicochemical data related to these sites (extracted 
from a number of existing databases) were modelled using a neural network.  The 
statistical model was fine-tuned and then interrogated to give the variables a ranking 
based on their importance in predicting the assemblages and how the predictions 
related to individual variables.  Next, the predictions were mapped out over the entire 
stream network to give a predictive map of fish assemblages.  An index of biotic 
integrity was calculated for each wadeable segment and these were also mapped out 
over the entire region (see Fig 2 and data supplied as GIS layer). 
 

2 Methods 
2.1 Predictive model construction 
A general outline of the development of the predictive model is given next and is shown 
diagrammatically in Fig. 1 (for technical details on model construction see Appendix 1).  
The presence/absence data for the 13 species present at more than 3% of sites were 
used to develop the predictive model.  The 3% threshold was used as species present 
at only a few sites are very difficult to model because there a so few examples of their 
habitat requirements.   
 

2.2 Data sources  
2.2.1 Fish 

The data on freshwater fish presence and absence came from the New Zealand 
Freshwater Fish Database (NZFFDB) (McDowall & Richardson, 1983).  The NZFFDB 
sites selected were those including electrofishing, trapping and spotlight surveys giving 
2269 sites.  Where species identification was not definite (e.g. indeterminate bully 
species) these site records were removed as were sites where stream order was 
greater than order 4; this reduced the database to 1967 sites.  Thirteen taxa were 
recorded at more than 3 % of the 1967 sites (taxa occurring at less than 3 % of sites 
were not included) (Table 1; Fig. 3). 
 
Two non-migratory species are recorded in the Waikato Region; Cran’s and upland 
bullies, but only 4 records were for upland bullies so these were discarded. Exotic 
species other than salmonids were not included in modelling because their distribution 
is generally related to areas where they have been released rather than to habitat 
requirements.  The survey sites gave a relatively representative coverage of the region 
except for the southern, and the very northernmost part of the region (Fig. 4).   
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Figure 1: Flow chart for predictive IBI development. 
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Figure 2: Map showing the predicted IBI scores over the Waikato Region for streams of 
4th order and less. 
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Table 1: Species list and relative abundance of species at the 2269 sites initially used 
from the NZFFDB. After sites with unidentified species were removed, 1967 
sites were available for model building.  Twenty-seven sites were recorded 
as nil with no fish recorded and these were also removed.  Species marked 
with an asterisk were not used in modelling. 

Scientific name  Common name Number of 
sites 

Percentage of 
sites 

Anguilla dieffenbachii Longfin eel 1117 49.25 

Anguilla australis Shortfin eel 719 31.70 

Gobiomorphus cotidianus Common bully 540 23.81 

Gobiomorphus huttoni Redfin bully 458 20.19 

Galaxias fasciatus Banded kokopu 425 18.74 

Galaxias maculatus Inanga 319 14.07 

Cheimarrichthys fosteri Torrentfish 290 12.79 

Gobiomorphus basalis Cran’s bully 282 12.43 

Anguilla spp.* Unidentified eel 274 12.08 

Retropinna retropinna Common smelt 263 11.60 

Oncorhynchus mykiss Rainbow trout 257 11.33 

Salmo trutta Brown trout 160 7.05 

Gambusia affinis* Gambusia 103 4.54 

Carassius auratus* Goldfish 102 4.50 

Galaxias brevipinnis Koaro 85 3.75 

Ameiurus nebulosus* Catfish 81 3.57 

Galaxias argenteus Giant kokopu 72 3.17 

Gobiomorphus spp.* Unidentified bully 69 3.04 

Mugil cephalus* Grey mullet 52 2.29 

Cyprinus carpio* Koi carp 50 2.20 

Geotria australis* Lamprey 47 2.07 

Galaxias spp.* Unidentified galaxiid 41 1.81 

Scardinius erythrophthalmus* Rudd 41 1.81 

Neochanna diversus* Black mudfish 32 1.41 

Galaxias postvectis* Shortjaw kokopu 23 1.01 

Gobiomorphus gobioides* Giant bully 22 0.97 

Salmo* Unidentified salmonid 16 0.71 

Gobiomorphus hubbsi* Bluegill bully 15 0.66 

Aldrichetta forsteri* Yelloweye mullet 9 0.40 

Ctenopharyngodon idella* Grass carp 9 0.40 

Gobiomorphus breviceps* Upland bully 4 0.18 

Mugil* Unidentified mullet 4 0.18 

Poecilia reticulata* Guppy 4 0.18 

Rhomboslea retiaria* Black flounder 4 0.18 

Salvelinus fontinalis* Brook char 4 0.18 

Grahamina sp.* Estuarine triple fin 3 0.13 

Galaxias divergens* Dwarf galaxias 1 0.04 

Perca fluviatilis* Perch 1 0.04 
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Figure 3: Proportion of the 1967 sites in the Waikato region at which each of the 13 
modelled species were found. 
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Figure 4:  Site map showing the Waikato sample sites from the New Zealand 

Freshwater Fish Database. 

 

2.2.2 Habitat  
The habitat data for the predictions came from two sources; the River Environment 
Classification (REC; Snelder et al., 1998) and the Freshwater Environments of New 
Zealand (FWENZ; Wild et al., 2005) (see appendix for details of FWENZ variables 
used).  The REC data used was the ‘raw data’; that is, the proportion of the catchment 
covered by each variable rather than the categorical classification classes.  The 
FWENZ data was developed for a separate classification process initiated by the 
Department of Conservation to classify rivers of national importance in parallel with the 
Land Environments of New Zealand (LENZ) classification process.  Significantly, the 
FWENZ data was developed specifically for biological classification as opposed to the 
more physical/stream morphology emphasis in the REC.  First the data were collated 
from the databases (see below for database details) then checked, screened, 
processed and formatted.  In this process any of the environmental variables with a 
Pearson correlation co-efficient greater than 0.8 were removed from the list of potential 
variables.  All reaches listed as stream order 5 or greater were removed as these were 
considered to be non-wadeable and so were not included in the data extraction 
process. 
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2.3 Model architecture and number of variables 
An iterative approach was taken to deciding on the number of variables used and the 
model architecture.  A combination of the number of hidden nodes and epochs was 
trialed using the average Cohen’s kappa score as the criterion for deciding on the best 
combination (see model validation section below for more details).  The entire dataset 
of environmental variables (minus highly correlated variables) was used initially and 
when a good architecture was found after iteration the best 35 variables were identified 
using the quantification process described below.  The iterative approach above was 
again employed with the reduced variable set and the final architecture was 
determined.    

2.4 Validation with independent data 
Independent data were used to ensure that the model was not overtrained (this is 
where the model learns the training data so well that it is not useful on other data) 
using N-fold crossvalidation (also known as leave-one-out validation).  This process 
involves taking out the first site in the list, building the model with the rest of the sites, 
and then testing the held out site using this model.  The site is then put back and the 
next site taken out, again the model is built and the held out site is run through the 
model, and so on until all sites are tested and the results presented are for these held 
out sites.  This effectively means that the model is tested on an independent dataset 
equivalent in size to the original dataset.   

2.5 Model evaluation 
Assessing the accuracy of distribution models is difficult because of the relative 
rareness or commonness of individual species.  For example, if a fish is present at only 
5% of the sites and a model is produced that predicts it will never occur, then that 
model will be assessed as being correct 95% of the time (or have a classification 
success of 95%).  Obviously this result is misleading, and the results must be 
considered cautiously.  One good way to judge the accuracy of predictive 
presence/absence models is to use a measure called Cohen’s kappa (Fielding & Bell, 
1997).  This measure is independent of species prevalence and can be thought of as 
the percentage improvement in discrimination over chance.   
 
A further difficulty with evaluating predictive presence/absence models is the probability 
cut-off used, because the model predictions are continuous values between 0 and 1 
rather than either presence or absence.  Traditionally the view has been that a 
predictive probability > 0.5 is considered to be present and a prediction less than 0.5 as 
absent, however, a better way to decide on the best cut-off to is to use a Receiver 
Operator Plot (ROC) (Zweig & Campbell, 1993).  This process creates a curve based 
on all probability thresholds to find the best one to use to maximise prediction success.  
Furthermore, the area under the ROC can be used to estimate the accuracy of the 
predictions independent of the threshold used.  The area under curve (AUC) values 
have been quantified by Hosmer & Lemeshow, (2000) who found that an AUC > 0.9 is 
outstanding discrimination; and 0.8 - 0.9 is excellent; an AUC 0.7 - 0.8 is acceptable 
discrimination,  an AUC less than 0.6 is poor discrimination, and 0.5 and or represents 
no discrimination. 
 
To optimise the predictive accuracy of the model a number of combinations of neural 
network architecture and the number of iterations were tried until the best output was 
achieved.  This architecture was then used as the final model to predict fish 
communities over the entire regional stream network. 

2.6 Quantifying predictor variable contributions 
To determine the relative importance of each predictor variable we used the connection 
weights method (Olden and Jackson 2002).  To calculate connection weights, the 
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product of the input-hidden and hidden-output connection weights between each input 
neuron and output neuron were summed across all hidden neurons using the raw 
connection weights (Olden and Jackson 2002).  The ANN model was run 100 times 
and the average relative contribution of each variable was recorded from each run to 
rank the importance of the variables.   

2.7 Sensitivity analysis 
Sensitivity analysis was used to visualize the relationship between each of the species 
and the environmental variables.   This is achieved by holding all the other variables at 
their mean values and then varying the variable of interest throughout its full range and 
plotting the relationship (Ozesmi & Ozesmi, 1999).  The probability of encountering the 
individual fish species of interest can be calculated and plotted over the entire range of 
any variable of interest.   

2.8 Predictive IBI 
Of the 50697 stream reach segments identified to the Waikato Region, 47024 were 
less than or equal to 4th order (as identified by the REC) and the predicted fish 
assemblages for these segments were passed to the IBI model and the scores 
calculated.  The IBI scores for the regional stream network were then mapped out.   
 

3 Results 
3.1 Network architecture and variables 
The final architecture used for the predictive model contained 35 hidden nodes and 
was run for 500 epochs.  Thirty five predictor variables were used after the ranking and 
quantification process (see Table 3 for variable list). 

3.2 Model evaluation 
3.2.1 Species comparison 

The final predictive model after evaluation had a high level of accuracy; with an 
average crossvalidated correct classification rate of 85% (Table 2. Figure 5).  The 
average Cohen’s kappa score was 0.45 (range 0.30 – 0.67) which means that overall 
the predictions were at least 45% better than chance.  These results are very 
conservative as they were obtained using N-fold crossvalidation, which effectively tests 
the predictions on another independent dataset equivalent in size to the original 
dataset.  The evaluation measures given in Table 2 use the thresholds from the ROC 
analysis.  The area under curve results show that 10 of the 13 taxa have prediction 
accuracies classed as outstanding or excellent (that is an AUC > 0.8; Hosmer & 
Lemeshow, 2000).  The other 3 species have predictions classed as acceptable. 
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Figure 5: Crossvalidated Cohen’s kappa results for the 13 species see text for details 

on classifications. 

 
 

Table 2: Proportion of sites where each of the modelled species occurred and the 
critical threshold and area under curve (AUC) results for ROC analysis from 
N fold crossvalidation (see text for details). AUC results > 0.8 (bold)  are 
considered excellent discrimination or > 0.9 (bold*) as outstanding 
discrimination (Hosmer & Lemeshow, 2000). 

Species Prevalence Critical 
threshold

% correct Cohen’s 
kappa 

Area 
under 
curve 

Shortfin eel 0.29 0.43 0.75 0.36 0.78 

Longfin eel 0.51 0.44 0.7 0.4 0.79 

Torrentfish 0.14 0.30 0.86 0.45 0.85 

Giant kokopu 0.03 0.54 0.96 0.36 0.86 

Koaro 0.04 0.15 0.95 0.3 0.83 

Banded kokopu 0.20 0.23 0.84 0.57 0.90 

Inanga 0.14 0.40 0.86 0.46 0.86 

Cran's bully 0.13 0.36 0.88 0.49 0.87 

Common bully 0.23 0.30 0.73 0.33 0.77 

Redfin bully 0.22 0.45 0.88 0.67 0.94* 

Rainbow trout 0.12 0.20 0.88 0.51 0.91* 

Smelt 0.11 0.38 0.89 0.4 0.84 

Brown trout 0.18 0.34 0.86 0.53 0.88 

Mean 0.18 0.35 0.85 0.45 0.85 
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3.2.2 Assemblage comparison 
Another way to evaluate the match between predictions and reality is to compare how 
the predicted assemblages compare with the observed assemblages. To do this the 
simple matching coefficient was used, this is the percentage similarity between 
observed and expected assemblages.  The simple matching coefficient results are 
shown in Figure 6.  Eight hundred and sixty sites gave a perfect match (100% 
similarity), a further 454 sites were 90% or more similar and 523 sites had an 80% or 
better match.  If those three groups are added together then more than 90% the sites 
have an 80 % or better match between observed and expected communities.  Because 
this evaluation is based on what is effectively an independent dataset, we can expect 
that this level of accuracy would be similar for any new sites. 

Simple matching co-efficient betwen observed and predicted communities
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Figure 6: Histogram of crossvalidated simple matching coefficients for the match 

between observed and predicted fish assemblages using the ANN model at 
the 1967 Waikato sites. Matching coefficient values >0.8 indicate more than 
80% matching between observed and expected communities. 

3.3 Predictor variable importance 
The relative influence of predictor variables was calculated from the connection weights 
in the neural network and then ranked (Table 3).  The variable rankings were 
dominated by the variables calculated from upstream catchments and weighted by 
rainfall.  Three of the first 4 variables are climate related - temperature and rainfall.  
The highest ranking variable (Usaveslope) was calculated from the average slope of 
the stream above the site from a 30m digital elevation model (DEM) and was weighted 
by the rainfall in the catchment area.   Stream order was the next ranked variable 
followed by phosphorus.  The first landcover variable (upstream indigenous forest) 
came in at 7 in the ranking followed by the first of the segment variables - the slope of 
the segment where the site is located.   Moving down the list the variables next in the 
ranking are a mixture of geology and climate until the first of the downstream variables 
(the distance from the site to the sea).  The next variables are segment shade, 
upstream pasture, raindays and the presence of a downstream floodgate.   The next 
downstream variable in the ranking is the presence of a dam.  The subsequent 
variables are a mixture of upstream and segment landcover, other climate variables, 
and the presence of a downstream culvert.   
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Table 3: Ranking of importance of the 35 predictor variables from the River 
Environment Classification and Freshwater Environments of New Zealand 
databases used for predicting fish communities. 

Rank Abbreviation Description of variable 

1 Usaveslope Runoff weighted catchment average slope calculated for 30m DEM grid 

2 Usavtcold_q Runoff weighted mean minimum July air temperature 

3 Usraindays20_q Runoff weighted catchment rain days (greater than 20mm/month) 

4 Usraindays25_q Catchment rain days (greater than 25mm/month) 

5 Order Stream order 

6 Usphos_q Runoff weighted catchment average of phosphorus 

7 Usindigforest_q % of catchment in LCDB category (indigenous forest) 

8 Segmaxslope_grid Maximum segment slope based on 30m DEM grid 

9 Ushard_q Runoff weighted catchment average of hardness (induration) 

10 Ussolarradsum Runoff weighted December catchment solar radiation 

11 Segequitwin Current wintertime equilibrium temperature 

12 Topvolcsof Proportion of catchment volcanic soft 

13 Topvolchar Proportion of catchment volcanic hard 

14 Topgrey Proportion of catchment in greywacke 

15 Distsea Distance from the coast 

16 Segshade Estimate of current segment shade 

17 usPastoral_Q % of annual runoff from LCDB category (pastoral) 

18 Segpastoral % of riparian area in LCDB category (pastoral) 

19 Usraindays200_q Runoff weighted catchment rain days (greater than 200mm/month) 

20 Fld_gat Flood gate downstream 

21 Usexoticforest % of annual runoff from LCDB category (exotic forest) 

22 Segindigforest % of riparian area in LCDB category (indigenous forest) 

23 Segslope Average segment slope 

24 Dam Presence of a dam downstream 

25 Lcdbarea Catchment area from LCDB 

26 Segexoticforest % of riparian area in LCDB category (exotic forest) 

27 Usscrub_q % of annual runoff from LCDB category (scrub) 

28 Aveelev Average segment elevation 

29 Segscrub % of riparian area in LCDB category (scrub) 

30 Segbare % of riparian area in LCDB category (bare) 

31 Cvt Presence of a culvert downstream 

32 Reachlen Segment length 

33 Usavtwarm_q Runoff weighted Mean January air temperature 

34 Ussteep_q % annual runoff volume from area of catchment with slope > 30° 

35 Uslowgrad_q % annual runoff volume from area of catchment with slope < 30° 
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3.4 Sensitivity analysis 
The direction of influence of any of these variables on individual species can be 
calculated using sensitivity analysis, which is obtained by holding all the other variables 
at their mean values, and then varying the variable of interest throughout its full range 
and plotting the relationship.  With thirty-five variables and 13 species there are a large 
number of combinations but a few examples for 12 species are given in Figures 7 and 
8.  The first set of plots (Fig. 7) show the influence of average catchment phosphorus 
weighted by rainfall on the probability of capture for the 12 species.   The plots show 
that the probability of occurrence reduces with increasing catchment area in 
phosphorus for most of the species except Cran’s and common bullies, rainbow trout 
and smelt whose probability of occurrence peaks at moderate phosphorus levels.   The 
next set of plots (Fig. 8) show the relationship between the probability of occurrence 
and the proportion of the segment in pastoral farming.  The plots show the increasing 
likelihood of shortfin eels, torrentfish, inanga, Cran’s and common bullies occurring with 
increasing proportions of pastoral landuse.  The opposite is revealed for longfin eels, 
giant kokopu, koaro, banded kokopu, redfin bullies and smelt with decreasing 
probability of occurrence with increasing phosphorus.   When considering these plots it 
is important to note that these relationships are not necessarily causative as many of 
the variables are inter-correlated with landuse patterns. 
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Figure 7: Sensitivity analysis for catchment phosphorus versus probability of occurrence.  In each plot (one for each taxon) all other variables were 

set to their mean values and the catchment proportions of the variable were varied over its full range.  Note the y-axis scales differ 
depending on prevalence of the taxa. 

 
 



Doc # 1058758/v2 Page 15 

Shortfin eel

min max

P
ro

ba
bi

lit
y 

of
 o

cu
re

nc
e

2.8e-7
3.0e-7
3.2e-7
3.4e-7
3.6e-7
3.8e-7
4.0e-7
4.2e-7
4.4e-7
4.6e-7
4.8e-7

Longfin eel

min max
0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Torrentfish

min max
0.04

0.06

0.08

0.10

0.12

0.14

Giant kokopu

min max
0.02

0.04

0.06

0.08

0.10

0.12

Segment pastoral farming

Koaro

min max
0.001

0.002

0.003

0.004

0.005

0.006

0.007

Banded kokopu

min max
0.013

0.014

0.015

0.016

0.017

0.018

0.019

0.020

0.021

Inanga

min max
0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Cran's bully

min max
0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

Common bully

min max
0.20

0.25

0.30

0.35

0.40

0.45

Redfin bully

min max
0.03

0.04

0.05

0.06

0.07

0.08

0.09

Rainbow trout

min max
0.0020

0.0022

0.0024

0.0026

0.0028

0.0030

0.0032

0.0034

Smelt

min max
0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

 
Figure 8: Sensitivity analysis for the proportion of the stream segment in pastoral farming versus probability of occurrence.  In each plot (one for each 

taxon) all other variables were set to their mean values and the catchment proportions of the variable were varied over its full range.  Note 
the y-axis scales differ depending on prevalence of the taxa. 
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4 Discussion 
Regional models predicting fish assemblages over the entire stream network have 
been developed for three North Island regions; Wellington, Hawkes Bay and now for 
wadeable streams in Waikato.  Similar although lower levels of prediction accuracy 
have been found for the other models but the prediction accuracies are higher for the 
regional models than for a similar all North Island model (MKJ unpublished data).  This 
suggests that there are regional differences in the relationships between variables and 
assemblages among North Island regions or that the relative importance of variables 
varies between the different regions. 
 
The high levels of predictive accuracy revealed in this model reveal the strong 
relationship between catchment scale variables and fish occurrence. In contrast, the 
predictions of stream invertebrate communities at the catchment scale were not as 
successful (MKJ unpublished data), suggesting that local or proximal scale variables 
are more important for the invertebrates.  The strong influence of flow, slope, rainfall, 
temperature, stream-size and catchment vegetation on fish assemblages was revealed 
by the predictive model, as downstream or proximal variables were well down the 
variable ranking list.    
 
The 1967 sites available for model building were considerably higher than for the 
Hawkes Bay Region where more than 600 sites were available and the Wellington 
Region where 379 sites were used.  Obviously the more sites available the better the 
model will be, and the evaluation methodology used showed that the model performed 
very well.  The most important factor is that the sites used cover all the possible stream 
habitat types that exist in the region.  Also, the sampling methods used for most of the 
sites in the NZFFDB are not able to accurately represent stream fish assemblages in 
large or non-wadeable rivers, thus wadeable streams (≤ 4th order) only were used in 
this model.   

4.1 Assemblage-environment relationships 
The development of the FWENZ variables used as predictors here followed on from the 
Land Environments of New Zealand (LENZ) process.  Discussion of their usefulness is 
beyond the scope of this report but Wild et al., (2005) discuss these variables and their 
calculation in detail.  The environmental variables associated with the fish assemblages 
were ranked by their importance but it is essential to note that this is importance when 
predicting whole assemblages and some variables will be more or less important when 
species are considered individually.  Many of the environmental variables available to 
use as predictors are highly correlated with each other, for example landuse tends to 
change with elevation and distance from the coast, as do rainfall and temperature.  The 
removal of highly correlated variables during data-screening lessened the influence of 
these correlations.  Many of the FWENZ variables were weighted by flow by using 
average rainfall multiplied by the area of the catchment.  These flow weighted variables 
were generally the variables mostly selected by the model as the best predictors.  The 
separation of variables into upstream, downstream and segment classes (Table 4) 
reveals the importance of upstream variables for predicting the stream communities.   
The first of the segment variables comes in at 8 in the ranking and the first of the 
downstream variables is not until 15.   
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Table 4: The 35 predictor variables from the River Environment Classification (REC) 
and Freshwater Environments of New Zealand (FWENZ) databases used for 
predicting fish communities grouped by upstream, segment and downstream 
influence. 

Overall rank Upstream variables 

1 Runoff weighted catchment average slope calculated for 30m DEM grid 

2 Runoff weighted mean minimum July air temperature 

3 Runoff weighted catchment rain days (greater than 20mm/month) 

6 Runoff weighted catchment average of phosphorus 

7 % of catchment in LCDB category (indigenous forest) 

9 Runoff weighted catchment average of hardness (induration) 

10 Runoff weighted December catchment solar radiation 

12 Proportion of catchment volcanic soft rock 

13 Proportion of catchment volcanic hard rock 

14 Proportion of catchment in greywacke 

17 % of annual runoff from LCDB category (pastoral) 

19 Runoff weighted catchment rain days (greater than 200mm/month) 

21 % of annual runoff from LCDB category (exotic forest) 

25 Catchment area from LCDB 

27 % of annual runoff from LCDB category (scrub) 

33 Runoff weighted mean January air temperature 

34 % annual runoff volume from area of catchment with slope > 30° 

35 % annual runoff volume from area of catchment with slope < 30° 

Segment variables 

5 Stream order 

8 Maximum segment slope based on 30m DEM grid 

11 Current wintertime equilibrium temperature 

16 Estimate of current segment shade 

18 % of riparian area in LCDB category (pastoral) 

22 % of riparian area in LCDB category (indigenous forest) 

23 Average segment slope 

26 % of riparian area in LCDB category (exotic forest) 

28 Average segment elevation 

29 % of riparian area in LCDB category (scrub) 

30 % of riparian area in LCDB category (bare) 

32 Segment length 

Downstream variables 

15 Distance from the coast 

20 Flood gate downstream 

24 Presence of a dam downstream 

31 Presence of a culvert downstream 
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4.2 Species-environment relationships 
The individual species-environment relations are summarised by the sensitivity 
analysis.  Because of the 13 species and 35 variables there are a large number (455) 
of associations to analyse so this must be restricted to particular combinations of 
interest (Figs. 7 & 8).   

4.3 Limitations of the predictive model 
The predictions of the model are limited by the range of sites used to build the model 
and the nature/accuracy of the predictor variables.  The assumptions behind a regional 
predictive model are:   
1. that all main habitat types existing in the region are found in the sites used in 

training the model and; 
2. that all the important variables influencing the assemblages being modelled are 

available as predictor variables and that the variables provided accurately 
represent environmental conditions prevailing in the catchments. 

 
The plot showing the placement of survey sites (Fig. 4) shows a reasonably good 
spatial coverage which suggests that most of the available habitats have been covered.  
The exceptions would be the very large and very small streams.  Rivers larger than 
fourth order are problematic as they are rarely sampled and samples tend to only be 
representative of the edge of the river rather than the whole river at the site.  
Furthermore, the smaller streams are not represented by the REC drainage network. 
The current predictions can be used to develop predictive maps of the distribution of 13 
freshwater fish species for mapped wadeable streams throughout the Waikato Region 

4.4 Future data requirements 
The model could be significantly improved with more accurate data.  One of the most 
important predictor variables is landuse but there is at present no data available 
discriminating farming intensity with sufficient detail.  The data from the LCDB has just 
one pastoral farming class covering all farm types although the recently available 
LCDB2 has two pastoral classes which may be an improvement.  Other regional finer 
scale data such as that available using Light Detection and Ranging (LIDAR) are likely 
to be very useful for refining the accuracy of predictor variables. Work is currently 
underway at Environment Waikato to develop more detailed pastoral landuse predictor 
variables. 
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Appendix 1: Technical details on model 
construction validation and evaluation 
from Joy & Death (2004) 
Artificial neural networks 
Of the many neural network types available (see (Bishop, 1995) we chose a single 
hidden-layer feedforward multi layer perceptron trained using the backpropagation 
error algorithm (Rumelhart et al., 1986).  Specifically we used the resilient 
backpropagation ‘Trainrp’ (Matlab®) network training function that updates weight and 
bias values according to the resilient backpropagation algorithm (RPROP) during 
training.  This network consisted of single predictor, hidden and output layers with a 
predictor neuron for each independent variable and an output neuron for each 
dependant variable.  A single hidden layer was used because it reduces computation 
time and often produces similar results to networks with multiple hidden layers (Bishop, 
1995; Kurkova, 1992).  Each neuron in the network is connected to all neurons from 
adjacent layers.  These connections among neurons are assigned a weight that 
dictates the intensity of the signal transmitted by the connection and the state of each 
input neuron is defined by the incoming signal transmitted by the input variable.  The 
state of the other neurons is evaluated locally by calculating the weighted sum of the 
incoming values of the predictor variables of the previous layer.  The network is trained 
with a back-propagation algorithm in which all weights are iteratively adjusted, with the 
goal of finding a set of connection weights that minimizes the error of the network.  
During the training process the observations are presented to the network sequentially 
and the weights adjusted depending on the magnitude and direction of the error.  
Learning rate and momentum vary as a function of the network error to ensure a high 
probability of global network convergence (see Bishop (1995) for details of the 
procedure described above).  For further details of the mathematical aspects of ANNs 
and their use in ecological applications we refer readers to Lek et al. (1996) and Olden 
and Jackson (2001). 
 
We determined the optimal number of hidden neurons and number of training epochs 
iteratively by comparing the performances of different networks.  To achieve this we 
compared networks with 20 to 120 (in intervals of 20) hidden neurons and varied the 
number of epochs from 50 to 250 (in 50 epoch intervals) and then selected the 
combination that produced the greatest predictive accuracy based on the evaluation 
procedures outlined below.   
 
We used crossvalidation (see model evaluation below for details) for this optimisation 
to ensure that the network was not ‘overtrained’.  Overtraining occurs when the network 
learns the training data extremely well but is not able to generalise well (Chatfield, 
1995).  After optimisation, the network consisted of 31 predictor neurons representing 
each of the independent predictor variables.  The hidden layer consisted of 70 neurons 
and there were 18 output nodes, one for each of the dependant variables (the 18 
species being modelled) and the training was run for 100 epochs.  The independent 
variables were converted to z – scores prior to training.  

Model evaluation 
To evaluate the accuracy of the predictive model we used a leave-one-out cross-
validation (jack-knife) method.  This method involves excluding one observation, 
reconstructing the model and then predicting the response of the excluded observation.  
This process provides a nearly unbiased estimate of model accuracy (Olden, 2000).  
To assess the overall classification success of the model we first derived matrices of 
confusion (Fielding & Bell, 1997).  A matrix of confusion tabulates the observed and 
predicted presence/absence patterns to provide a summary of the number of correct 
and incorrect classifications from the model.  Using these matrices, five metrics of 
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prediction success were produced:  (1) The overall classification accuracy of the model 
was measured as the percentage of sites where the model correctly predicted the 
presence/absence of each of the species.  (2) The ability of the model to accurately 
predict species presence was assessed as model sensitivity (i.e. the percentage of site 
presences correctly predicted).  (3) The ability of the model to correctly predict species 
absences was assessed and recorded as model specificity.  (4) Cohen’s Kappa 
coefficient of agreement (Titus et al., 1984) was used to examine if model accuracy 
differed from expectation based on chance alone.  We also calculated the Kappa z-
score, 95 % confidence interval and P-value for each taxon using PROC FREQ (SAS 
2000).  Cohen’s kappa is a robust model evaluation method that is relatively 
independent of species frequency of occurrence (Manel et al., 2001); furthermore 
Cohen’s kappa is a conservative estimate of prediction accuracy as the estimation of 
the agreement due to chance is underestimated (Foody 1992). 
 
Rather than simply following the conventional decision threshold of 0.5 (e.g. Oberdorff 
et al, 2001) for deciding on species presence we constructed receiver-operating 
characteristic (ROC) plots to estimate the predictive ability of the model over all 
decision thresholds and find the optimal threshold (Fielding & Bell, 1997; Zweig & 
Campbell, 1993).  The ROC plot is obtained by plotting the true positive proportion on 
the y-axis against the false positive proportion on the x-axis as the decision threshold is 
varied over the entire range between 0 and 1.  The optimum threshold is chosen to 
maximise overall classification accuracy of the model assuming equal costs of 
misclassification of species presence/absence.   The area under the ROC curve (AUC) 
is an index of accuracy as it provides a single evaluation measure independent of any 
particular threshold.  Confidence intervals were obtained for the AUC from 999 
bootstraps from observed and predicted values for each taxon.  We used the AUC from 
the ROC plots as the fifth evaluation method and to find the optimal probability 
threshold for each taxon (Hosmer & Lemeshow, 2000; Zweig & Campbell, 1993).  
Finally, we compared the entire predicted communities (using crossvalidation) to those 
observed at the 1967 sites to measure the percentage of similarity between the 
observed and expected community using the simple matching coefficient, (Krebs, 
1999).   

Quantifying predictor variable contributions 
To determine the relative importance of each predictor variable we used the connection 
weights method (Olden and Jackson 2002).  To calculate connection weights the 
product of the input-hidden and hidden-output connection weights between each input 
neuron and output neuron were summed across all hidden neurons using the raw 
connection weights (Olden and Jackson 2002b).  The ANN model was run 100 times 
and the average relative contribution of each variable was recorded from each run to 
rank the importance of the variables.   
 
To elucidate the direction of relationship between predictions and predictor variables 
we used sensitivity analysis (Özesmi and Özesmi, 1999).  This analysis involves 
varying one predictor variable over its entire range while holding all other variables at 
their mean value and examining the response of the output predictions.  However, in 
this case where there are a large number of connections the process becomes rather 
cumbersome.  Therefore, we selected some variables of interest (generally associated 
with fish distribution) that also had high contributions from the connections weights 
analysis as examples and examined the direction of influence for these variables.  All 
the procedures described above were run on Matlab® version 6.5 using the Neural 
Networks toolbox. 
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Appendix 2: FWENZ variables used in 
model construction 

Variable description Variable Name Units 
Network from node Nzfnode dimensionless 
NZREACH NZREACH dimensionless 
Network to node Nztnode dimensionless 
Segment maximum elevation based on 30m DEM  segMaxElev_Grid m 
Segment minimum elevation based on 30m DEM  segMinElev_Grid m 
X coordinate of catchment centroid usXcentroid m 

Y coordinate of catchment centroid usYcentroid m 
Segment length segLen m 
Euclidean length of segment segEucLen m 
Stream order SegOrder dimensionless 
Segment average elevation based on 30m DEM  segAveElev_Grid m 
Elevation of upstream end of segment (From REC)  segUpElev m 
Elevation of downstream end of segment (From REC)  segDownElev m 
Total catchment area usArea m2 
   
Downstream Variables     
Average slope of downstream network dsAveSlope ratio 
Distance to coast from segment dsDistToSea m 
Maximum slope of downstream segments dsMaxSlope ratio 
Maximum of maximum downstream grid slope dsMaxSlope_Grid angle - degrees 
   
Segment Variables 1 (Climate)     
Average within segment mean minimum June air  temperature  segAveTCold oC*10 
Average within segment mean January air  temperature  segAveTWarm  oC*10 
Current summertime equilibrium temperature segEquiTSum oC 
Historic summertime equilibrium temperature segEquiTSum_Hist oC 
Current wintertime equilibrium temperature segEquiTwin oC 
Historic wintertime equilibrium temperature segEquiTwin_Hist oC 
Segment December solar radiation  segSolarRadSum W/m2 
Segment June solar radiation  segSolarRadWin  W/m2 
   
Table 4: Segment Variables 2 (Morphology)     
Maximum segment slope based on 30m DEM grid segMaxSlope_Grid angle 
Segment sinuosity segSinu reachlen/euclen 
Average segment slope segSlope ratio 
Average within segment slope  based on 30m DEM grid segSlope_Grid angle 
Estimate of historic segment land cover segVeg_Hist Dimensionless 
Estimate of current segment shade segShade Dimensionless 
Estimate of historic segment shade segShade_Hist Dimensionless 
   
Segment Variables 3 (Land cover)     
% of riparian area in LCDB category (wetland) segWetland % 
% of riparian area in LCDB category (urban) segUrban % 
% of riparian area in LCDB category (tussock) segTussock % 
% of riparian area in LCDB category (miscellaneous) segMiscLandCover % 
% of riparian area in LCDB category (pastoral) segPastoral % 
% of riparian area in LCDB category (scrub) segScrub % 
% of riparian area in LCDB category (bare) segBare % 
% of riparian area in LCDB category (exotic forest) segExoticForest % 
% of riparian area in LCDB category (indigenous forest) segIndigForest % 
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Variable description Variable Name Units 
Upstream Variables 1 (Climate/Flow)     
Coefficient of variation of annual catchment rainfall usAnRainVar mm 
Runoff weighted coefficient of variation of annual catchment 
rainfall 

usAnRainVar_Q mm 

Runoff weighted catchment average slope calculated for 30m 
DEM grid 

usAveSlope_Q angle - degrees 

Mean minimum July air temperature usAvTCold oC*10 
Runoff weighted mean minimum July air temperature usAvTCold_Q oC*10 
Mean January air temperature usAvTWarm oC*10 
Runoff weighted Mean January air temperature usAvTWarm_Q oC*10 
Catchment rain days (greater than 10mm/month) usRainDays10 mean # days/yr 
Runoff weighted catchment rain days (greater than 10mm/month) usRainDays10_Q mean # days/yr 
Catchment rain days (greater than 100mm/month) usRainDays100 mean # days/yr 
Runoff weighted catchment rain days (greater than 
100mm/month) 

usRainDays100_Q mean # days/yr 

Catchment rain days (greater than 15mm/month) usRainDays15 mean # days/yr 
Runoff weighted catchment rain days (greater than 15mm/month) usRainDays15_Q mean # days/yr 
Catchment rain days (greater than 20mm/month) usRainDays20 mean # days/yr 
Runoff weighted catchment rain days (greater than 20mm/month) usRainDays20_Q mean # days/yr 
Catchment rain days (greater than 200mm/month) usRainDays200 mean # days/yr 
Runoff weighted catchment rain days (greater than 
200mm/month) 

usRainDays200_Q mean # days/yr 

Catchment rain days (greater than 25mm/month) usRainDays25 mean # days/yr 
Runoff weighted catchment rain days (greater than 25mm/month) usRainDays25_Q mean # days/yr 
Catchment rain days (greater than 50mm/month) usRainDays50 mean # days/yr 
Runoff weighted catchment rain days (greater than 50mm/month) usRainDays50_Q mean # days/yr 
Total annual runoff volume  usFlow mm*m2/yr 
Mean annual low flow usLowFlow l/s 
Annual potential evapotranspiration of catchment usPET mm 
Runoff weighted annual potential evapotranspiration of catchment usPET_Q mm 
December catchment solar radiation  usSolarRadSum W/m2 
 Runoff weighted catchment December solar radiation  usSolarRadSum_Q W/m2 
June catchment solar radiation  usSolarRadWin W/m2 
Runoff weighted June catchment solar radiation usSolarRadWin_Q W/m2 
   
Upstream Variables 2 (Topography)     
Average slope of catchment calculated from 30m DEM grid usAveSlope angle - 

degree's 
Average elevation in up stream catchment usCatElev m 
Average elevation in up stream catchment flow weighted usCatElev_Q m 
Lake index usLake Dimensionless 
Proportion of catchment with slope >30° (steep) usLowGrad  % 
Proportion of catchment with slope <30° (not steep) usSteep % 
% annual runoff volume from area of catchment with slope < 30° usLowGrad_Q % 
% annual runoff volume from area of catchment with slope > 30° usSteep_Q % 
   
   
Upstream Variables 3 (Geology)     
% of catchment in LRI category (alluvium) usAlluvium % 
% of catchment annual runoff from LRI category (alluvium) usAlluvium_Q % 
% of catchment in LRI category (glacial) usGlacial % 
% of catchment annual runoff from LRI category (glacial) usGlacial_Q % 
% of catchment in LRI category (peat) usPeat % 
% of catchment annual runoff from LRI category (peat) usPeat_Q % 
Catchment average of calcium usCalc Ordinal scale 
Runoff weighted catchment average of calcium usCalc_Q Ordinal scale 
Catchment average of hardness (induration) usHard Ordinal scale 
Runoff weighted catchment average of hardness (induration) usHard_Q Ordinal scale 
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Variable description Variable Name Units 
Catchment average of particle size usParticalSize Ordinal scale 
Runoff weighted catchment average of particle size usParticalSize_Q Ordinal scale 
Catchment average of phosphorus usPhos Ordinal scale 
Runoff weighted catchment average of phosphorus usPhos_Q Ordinal scale 
   
Upstream Variables 4 (Land Cover)     
% of catchment in LCDB category (bare ground) usBare % 
% of annual runoff from LCDB category (bare) usBare_Q % 
% of catchment in LCDB category (exotic forest) usExoticForest % 
% of annual runoff from LCDB category (exotic forest) usExoticForest_Q % 
% of catchment in LCDB category (indigenous forest) usIndigForest % 
% of annual runoff from LCDB category (indigenous forest) usIndigForest_Q % 
% of catchment in LCDB category (mangrove, riparian, willows, 
coastal sands) 

usMangrove % 

% of annual runoff from LCDB category (mangrove, riparian, 
willows, coastal sands) 

usMangrove_Q % 

% of catchment in LCDB category (other than category 1-9) usMiscLandCover % 
% of annual runoff from LCDB category (other than category 1–9) usMiscLandCover_Q % 
% of annual runoff from LCDB category (pastoral) usPastoral_Q % 
% of catchment in LCDB category (pastoral) usPastoral % 
% of catchment in LCDB category (scrub) usScrub % 
% of annual runoff from LCDB category (scrub) usScrub_Q % 
% of catchment in LCDB category (tussock) usTussock % 
% of annual runoff from LCDB category (tussock) usTussock_Q % 
% of catchment in LCDB category (urban) usUrban % 
% of annual runoff from LCDB category (urban) usUrban_Q % 
% of catchment in LCDB category (inland and coastal wetlands) usWetland % 
% of annual runoff from LCDB category (wetlands) usWetland_Q % 

 
 


