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Statistical Forecasting of Probability of Precipitation

J.A. Renwick

ABSTRACT

The problem of objectively forecasting
probability of precipitation (PoP) for a
number of stations around New Zealand has been
approached using two different statistical
methods, discriminant analysis and linear
regression. Both methods use -output from a
numerical weather prediction (NWP) scheme as
predictands.

Linear regression predictions have properties
which are more desirable for operational use
than those calculated by discriminant
analysis, although results are similar for
both methods in terms of fit to dependent

data. It is concluded that objective
forecasts of PoP may be a useful forecasting
tool, especially over relatively short

prognosis periods.

BACKGROUND

Introduction

Currently in the National Weather Forecasting Centre,
forecasts issued to the <general public expressing
uncertainty about any weather element are expressed
grammatically, with terms such as 'possible', 'likely',
etc. Forecasts are not issued in terms of probability of
occurrence. Comparing the two ways of expressing
uncertainty, it seems the public understand numerical
probability forecasts as well as qualitative terms
(Murphy, et al., 1980). Forecasts issued in terms of
probability of occurrence are especially desirable to
some users, for example in weather dependent industry,
since a definite cost/penalty system can be applied to
these forecasts. This allows strategies to be calculated
for minimization of expected loss due to unsuitable
weather conditions, etc.
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As a first step in the preparation of operational
PoP forecasts, it is wuseful to have some form of
objectively calculated parameter for use as
guidance.. One way of objectively calculating a
forecast of any weather element over a short time
scale 1is to relate output from a numerical weather
prediction (NWP) model to the predictand weather
element by some form of statistical schemne. The
weather element studied here 1is ‘'occurrence of
precipitation', which has been taken as a total
recorded precipitation of 0.1 millimetres or more
during the period under consideration.

Two possible techniques may be applied when relating
NWP fields and weather elements. First, one may
rely on the "perfect prognosis" assumption, where
relationships are derived between predictands and
analyses of NWP fields. To obtain a forecast
operationally, relevant prognosed values from the
NWP model are substituted, giving an estimate of the
predictand at some future time. The assumption here
is that the prognosis used will match perfectly with
its verifying analysis. Alternatively, one may
relate prognoses directly with predictand values,
obtaining a separate relationship for each prognosis
used. This is known as the Model Output Statistics
(MOS) technique. The main advantage of this
technique is that as the prognosis period increases,
the prediction equations become more conservative
because less correlation can be found between the
predictors and predictand. This means the long
period forecasts tend toward climatology, reflecting
the increased uncertainty in the predictor fields.
Also any systematic bias in the prognosed NWP fields
will be taken into account in the derived
relationships. The MOS technique has been used
throughout this work.

Statistical Methods

(a) Linear Discriminant Analysis.

Given some set of predictors split into G ( 3 2)
groups based cn a predictand variable, a
discriminant analysis calculates new predictors
(known as discriminant functions) which maximise the
ratio of variance between the given groups to
variance within these groups. There may be up to
G-1 new predictors, which are uncorrelated linear
combinations of the original predictors. Assuming
some distribution for the discriminant functions (or
using some non-parametric technique), one may
calculate the probability that a new observation
belongs to any of the groups by measuring the
'nearness’' of the new observation to each group of
the dependent sample.
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That 1is, if the assumed density function for
predictors YireeeVt in group g is
f(yy,..-yelg) and the a riori probability of
group g occurring is Qg (the climatological
probability or relative frequency from the dependent
sample), Bayes Theorem may be used to give the

probability that a new observation of the predictors
belongs to group g (Miller, 1962):

f(yl, .eoyt‘g)ng

G

Z f(YI""Yt‘k)'Qk
k=1

f(gly]_,...,yt)’-’ (l)

where G 1is the total number of groups and
f(glyi,..-yt) 1is the a__posteriori probability
that the observation Yieee Yt belongs to
group g.

In the work that follows, the data used have been
split into two groups (G=2) for each station,
depending on whether or not measurable
precipitation fell at that station near to the
valid time of the predictors. Having only two
groups, only one discriminant function is
calculable. The appropriate density functions have
been assumed to be normal throughout.

(b) Multiple Linear Regression.

The method of multiple linear regression involves
the estimation Dby least squares of a linear
relationship between a set of predictors and some
predictand (Ostle and Mensing, 1975). In classical
linear regression, the predictand is assumed to be
continuous and normally distributed. However, for
this application, the predictand is not continuous
and may take only two values; O when precipitation
did not occur at the station and 1 when
precipitation did occur. Hence a predictand of
this sort is known as 'binary', either ‘'on' (set at
1) or ‘'off' (set at 0). The estimates yielded from
an equation on such a predictand are viewed as the
estimated probability of occurrence of the event in
question.

Predictors Used

Predictors were taken from archived prognoses of
fields produced by the New Zealand Meteorological
Service numerical weather prediction model
(Trenberth, 1973). The grid for this model covers



a large area of the Pacific as well as the
Australia and New Zealand region. All predictors
used were extracted from a small subsection of that
grid which covers the New Zealand area, as used for
numerical forecasts of maximum and minimum
temperatures (Renwick, 1980).

Fields used were 1000, 700 and 500 hectopascal
(hPa)* geopotential height, 600hPa vertical motion
and 1000-500hPa mean relative humidity for analysis
times of 0000 and 1200GMT and prognosis periods of
12,34,36 and 48 hours. Archives of all these
fields have been made routinely since the beginning
of 1979, The dependent data set was taken from
archives covering the period February 1979 to
December 1981 inclusive.

Predictor variables used were principal components
of each field as well as averaged grid point values
of the vertical motion and mean relative humidity
fields at the grid point nearest each station
forecast for. The principal components are
coefficients of empirical orthogonal functions
(EOFs), or eigenvectors, of the cross covariance
matrix of each field over all the grid points
used. They were calculated separately for each
prognosis period. For each field, out of a
possible thirty EOFs, the first six were taken as
predictors.

No clear-cut tests for significance of EOFs exist,
but a crude Xz test on the eigenvalues suggested
that only the first three for each height field and
the first four, or in some cases five, for the
vertical motion and relative humidity fields, were
significantly different from =zero. Six principal
components of the height fields were included as
possible predictors, since work on statistical
temperature forecasting suggests that the fourth,
fifth and sixth height field components contribute
useful information about the flow patterns, even
though they do not appear to De nominally
significant. A cutoff of six components was taken
arbitrarily for the other two fields for
programming simplicity.

Figures for explained variance for each of the
chosen EOFs are as in Table 1.

*1 hectopascal (hPa) = 1 mb (millibar)



Table 1:

Explained Variance (Percent)for
First Six EOFs of each Field

Field type and

PROGNOSIS PERIOD (HR)

EOF number 12 24 36 48
1000 hPa 1 68 67 63 63
height 2 14 14 17 17
3 11 11 10 10
4 3 3 4 4
5 2 2 3 3
6 1 1 1 1
total 29 98 98 98
700 hPa 1 74 74 75 76
height 2 13 14 14 14
3 8 7 7 6
4 2 2 2 2
5 1 1 1 1

6 1 1 0.5 0.5

total 29 99 99.5 99.5
500 hPa 1 76 78 79 80
height 2 12 11 12 12
3 7 7 5 4
4 2 2 2 1
5 1 1 1 1

6 1 c.5 0.5 0.5

total 99 99.5 99.5 28.5
600 hPa 1 25 29 30 28
vert. 2 23 24 26 28
motion 3 11 11 11 10
4 8 7 7 7
5 6 6 6 5
6 4 4 4 3
total 77 81 84 81
Mean 1 29 30 31 32
rel. 2 22 24 25 26
humidity 3 12 12 13 13
4 10 9 8 9
5 6 6 7 6
6 4 4 3 3
total 83 85 87. 89
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For the height fields, the first EOF is obviously
the most significant and the time series of its
coefficients is largely a seasonal trend -
typically about fifty percent of the variance in
the time series is explained by a simple seasonal
trend equation. The trends were subtracted from
these series and the remaining anomalies were used
as predictors.

For the vertical motion and mean relative humidity
fields, however, explained variance is spread much
more evenly over the first two or three EOFs and no
significant seasonal trend is evident in their
coefficients. Figure 1 illustrates the first six
EOFs for each field for the 12 hour prognosis
period. Corresponding EOF patterns are similar for
the three other prognosis periods.

Apart from principal components, actual values of
the magnitude of vertical motion and relative
humidity fields at thirteen of the NWP model
gridpoints were also used as possible predictors.
These values were averages of the magnitude of
either field, taken over the nine grid points
centered on and weighted towards the grid point
closest to each of the stations. Principal
components effectively describe gradients of the
fields wused, so that components of the height
fields used describe the wind flows associated with
those fields. Preliminary work suggested that
while measures of the gradients of the height
fields were more useful for prediction than actual
point values of geopotential, the same was not the
case for vertical motion and relative humidity.
Hence the inclusion of grid point values as well as
principal components  of vertical motion and
relative humidity.

Predictands

Stations and Time Periods Used

Rainfall records from thirteen stations around New
Zealand were obtained from the hourly rainfall tape
files of the New Zealand Meteorological Service
held at the Trentham Computer Centre. Records were
made available for the period of the complete NWP
archive, January 1979 to mid 1982. Prediction
equations were calculated on the basis of rainfall
totals over two twelve hour periods; 6 am to 6pm
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FIGURE 1(c) 500 hPa HEIGHT EIGENVECTORS.
12 HOUR PROGNOSIS PERIOD.

FIGURE 1(d) 600 hPa VERTICAL MOTION EIGENVECTORS.
12 HOUR PROGNOSIS PERIOD.
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FIGURE 1 (e) 1000 = 500 hPa MEAN RELATIVE HUMIDITY
EIGENVECTORS. 12 HOUR PROGNOSIS PERIQD.

('day') and 6 pm to 6am ('night'). The dependent
sample covered the period February 1979 to December
1981 inclusive and comprised approximately 900
observations for each twelve hour period for each
station. Predictors valid at OOOOGMT were used for
the 'day' period and those valid at 1200GMT were
used for the 'night' period. The list of stations
used along with the relative frequency of
occurrence of precipitation (for both twelve hour
periods combined) may be seen in Table 2.

Table 2:

Stations used in PoP Forecasting

Relative frequency (%)
Station Name of precipitation
(from dept. sample)

AK
RO
GS
NP
OH
PP
KL
NS
HK
KI
CH
DN
NV

Auckland airport ' 38
Rotorua " 34
Gisborne " 30
New Plymouth * 41
Ohakea airforce base 33
Paraparaumu " 36
Kelburn 34
Nelson " 26
Hokitika " 46
Kaikoura " 23
Christchurch " 24
Dunedin " 32

Invercargill " 42
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Seasonal Stratification

Apart from being split into two sections for day
and night, prediction equations were calculated
season Dby season as well as for all seasons
combined. Prediction equations calculated by
season rely on only two hundred to two hundred and
fifty observations each. The results obtained
varied markedly- through the seasons and gave very
poor fit in spring and summer for some stations,
especially using the discriminant approach. Hence
most results derived have been over the year as a
whole. Over the period of the dependent sample,
probability of occurrence of rain exhibited a
slight seasonal variation at all of the stations
used (of the order of two percent of the total
variance in the predictand probabilities). These
variations were subtracted from each predictand
series, as for the principal component series.
Results presented have been based on analysis of
all seasons combined.

RESULTS

Derivation of Prediction Equations

(a) Discriminant analysis

For the two group case, a discriminant function
defines one ‘'best' predictor from those available,
that 1is, the 1linear combination of original
predictors which maximises between group to within
group variance. A screening technique was employed
(Miller, 1962) to determine the most significant
initial predictors out of a possible thirty-two,
i.e. the thirty principal component values plus the
grid point values of vertical motion and mean
relative humidity nearest each station. The
screening technique uses a Chi-squared test on the
increase in between group variance to within group
variance for each new predictor entered. The
significance level used was 0.05 (95%), adjusted
for degrees of freedom. Since the humidity and
vertical motion fields show a more rapid
deterioration in accuracy with increasing prognosis
period than the geopotential height fields, the
geopotential height predictors became relatively
more strongly correlated with the predictands than
humidity and vertical motion predictors over the
longer prognosis periods. Typically, about eight
predictors were chosen, with the five most
important being (in order of frequency of choice):
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Relative humidity at the nearest grid point:

lst 1000 hPa principal component
5th 1000 hPa principal component
2nd 1000 hPa principal component
lst vertical motion principal component.

The potential usefulness of the discriminant functions
may be judged by two parameters:

Sum of squares accounted for between groups

E2 = (2)

Total sum of squares
which ma be compared to the ‘'variance reduction',
R, of <4regression analysis. Values of E vary
between 0 and 100 percent.
and

(ii) The ratio

Sum of squares accounted for between groups (3)
A o=

Sum of squares accounted for within groups

which is a measure of the discriminatory value of the
derived equation. This ratio is preferably 'large' and
may be very large if within group sum of squares 1is
small. For the two group case, these two parameters
are related as follows:

100
E2 = il (4)
1 4+
when E2 is expressed as a percentage. In Table 3,

the values of E2 are displayed (for twelve and
forty-eight hour prognosis periods), as they may be
most easily compared with variance reductions in
regression analysis.
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Table 3:
Correlation Ratio E2 (percent) for Discriminant Analysis

12 HOUR PROGNOSIS 48 HOUR PROGNOSIS

STATION DAY NIGHT DAY NIGHT
AK 34.1 32.1 14.0 11.5
RO 38.6 37.9 22.3 19.2
GS 7 30.3 33.8 14.8 19.3
NP 38.6 33.7 17.6 15.8
OH 34.4 32.2 19.6 12.8
PP 29.0 28.7 13.4 13.4
KL 32.6 36.5 12.1 17.7
NS 33.3 28.2 15.3 14.3
HK 49.7 48.7 29.7 24.3
KI 34.8 36.6 13.3 12.6
CH 30.2 29.5 15.0 7.4
DN 23.4 19.9 * 7.8
NV 26.8 24.4 14.8 12.1

* No significant discriminant function found.
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Table 3 demonstrates the deterioration with time
(prognosis period) of the predictive wvalue of
relationships derived. While data  for some
stations are fitted relatively well at the 12 hour
prognosis period (those whose a priori probability
of occurrence of precipitation is close to 50%),
all results at the 48 hour period are well below
what may be considered ‘useful ', with no
significant discriminant function being found for
'day' at Dunedin airport at this prognosis period.

(b) Multiple Linear Regression

A forward stepwise screening regression has been
used to pick the most significant predictors out
of the possible thirty-two. A standard analysis
of variance F-test on increase in regression sum
of squares, at the 0.05 1level, yielded about 9

predictors for each station. The number of
significant predictors tended to decrease with
increasing prognosis period, reflecting the

decrease in accuracy of the NWP prognoses.
Results were similar to those for discrimination,
with the five most significant predictors overall
being (in order of frequency of choice):

lst 1000 hPa principal component

Mean relative humidity at nearest grid point
3rd 1000 hPa principal component '

5th 1000 hPa principal component

2nd 1000 hPa principal component

The main parameter gquoted in regression analysis
is the variance reduction,defined as:

R2 Sum of squares accounted for by the regression

Total sum of squares

Values of the variance reduction, R2, are
similar to those of EZ2 for discrimination.
Table 4 shows values of variance reduction at 12
and 48 hour progncsis periods.

(5)



14

Table 4:
Variance Reduction R2 (Percent) for Regressions

12 HOUR PROGNOSIS 48 HOUR PROGNOSIS

STATION DAY NIGHT DAY NIGHT
AK 34.7 33.8 16.0 13.8
RO 40.7 39.9 22.9 22.7
GS 32.0 34.7 17.3 20.9
NP 39.5 34.9 20.9 18.5
OH 36.8 34.4 20.3 14.3
PP 31.3 30.9 13.5 17.3
KL 35.0 36.3 15.3 15.5
NS 36.4 29.9 17.3 14.8
HK 49.9 48.0 31.3 25.4
KI 34.8 37.2 14.1 16.2
CH 32.5 30.5 15.6 11.5
DN 23.4 20.0 10.7 8.1
NV 27.0 26.5 16.3 13.4

As for discrimination, variance reduction

decreases markedly with increasing prognosis
period. Only a few of the stations seem to have
usable results for 12 hour prognoses (also for 24
hour prognoses), while none appears useful at 26
and 48 hours.

Skill Scores

Apart from tests of significance applied to
equations derived on the dependent data, there are
various skill scores used to test the value of
probability forecasting schemes. Perhaps the most
useful and most easily interpreted is the Brier
Score (Brier and Allen, 1951) which may be defined
for a binary predictand as

N )
1 3 (yj - vi
N i=1

B = )2

(6)
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where y; is the observed probability (0 or 1) and
vy 1s the forecast probability. N is the number of
points in the sample The score defined in (6) is one
half of the score originally proposed by Brier and
Allen. This score may be thought of as the 'mean
residual variance', that amount of variation in the
predictand which is unaccounted for by the prediction
scheme. Perfect forecasts have a score of zero and
forecasts perfectly negatively correlated with the
predictand have a score of 1. Most of the following
results are in terms of this score.

For regression analysis, R2 is related to the Brier
score of the regression on the dependent data as
follows; '

B= ql(l-q)(1-R2) (7)
where q is the ‘climatological probability’ of
precipitation (i.e. the relative frequency from the
dependent sample). A regression estimate of a

predictand which is either 0 or 1 does not necessarily
lie within those bounds. Any estimate outside those
bounds may be truncated, however, which will decrease
(improve) the Brier score slightly. Any constant
forecast (e.g. c¢limatology) of a probability 'p'
receives a score of q(l-p)2 + (l-q)p2, where q is
the true climatological probability of the event
occurring. This is minimised when p is chosen to be
equal to g.

The only other score presented here is the Hanssen
Score (Hanssen and Kuipers, 1965), defined as

number of rain events correctly forecast

total number of rain events

number of non-rain events correctly forecast 1 (8)

total number of non-rain events

It has a value of 1 for perfect forecasts, 0 for
forecasts uncorrelated with the predictand and -1
for forecasts perfectly negatively correlated with
the predictand. This score involves a
categorization of the probability forecasts into
yves/no forecasts and hence may be varied depending
on the threshold chosen for categorizing the
forecasts (it is maximised when the cutoff for
categorization is taken as the climatological
probability of occurrence). For this reason, it
does not seem as suitable as the Brier score for
marking probability forecasts.
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Dependent Data

Figure 2 shows Brier scores for both statistical
methods on the dependent sample for 12 and 48 hour
prognoses. The values for regressions have been
calculated using equation (7). For the 12 hour
forecasts, _ regression estimates give a
consistently lower Brier score. This 1is also
apparent at longer prognosis periods, but the
difference is not so marked. These figures
highlight the greater operational usefulness of
regression estimates. The basis of a forecast by
discriminant analysis is to calculate the
probability that the given observation belongs to
each possible group. The essential problem is
that any observation bears at least some small
‘resemblance’ to each group of the dependent data;
hence it is very unlikely that an extreme forecast
(that of 0 or 100%) will ever Dbe produced. In
fact, if the function used does not discriminate
very well (as 1is the case here), the forecast

probabilities tend towards climatological
probabilities (relative frequencies from the
dependent sample). In other words, unless the

original groups are very sharply defined in terms
of the predictors used, the resulting forecast
probabilities will tend to be ‘hedged’' heavily
towards climatology.

Estimates calculated from a regression equation
are not so heavily biased towards climatology
Since there are more points in the dependent
sample associated with 'dry' periods than with
'wet' periods, there is a tendency for regression
estimates to be biased slightly low, especially at
long prognosis periods. By truncating estimated
probabilities to the allowable range (0 to 100%),
results are much ‘sharper' (more definite) than
those for discriminant analysis. The Brier score
reflects the sharpness of the predictions made,
with perfectly sharp forecasts scoring zero if
correct.

Because of the tendency for discrimination to
under forecast rainfall occurrence more than
regression, discrimination was consistently worse
than regression in terms of the Hanssen score, on
the dependent data.

Stations which gave the best results on dependent
data were Nelson, Hokitika, Kaikoura and
Christchurch. These stations all have quite
clear-cut preferred wind direction ranges for wet
and dry conditions, due mostly to the effect of
the Southern Alps. Hokitika is the most extreme
of these, where the equations derived imply any

flow with a westerly component is almost
invariably wet and any flow with an easterly
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component 1is dry. The same can be said for
Kaikoura and Christchurch, although in reverse.
Nelson shows similar characteristics, applied to
flows with either a northerly or southerly
component. North Island stations which gave the
best results were Rotorua and Gisborne, both of
which tend on average to be wet in easterlies and
dry in westerlies. Results were worst for Dunedin
and Invercargill where there 1is no strongly
preferred flow for either wet or dry weather,
based on the data used here.

As the statistical techniques used were Dboth
linear, results must be best where the
relationship between rainfall occurrence and wind
flow, mean relative humidity and vertical motion
is most 1linear. Stations which have scored the
worst may be described as having the most
non-linear relationships between rainfall
occurrence and the overall flow patterns. These
stations should benefit most from a non-linear
approach to PoP forecasting.

Independent Data

Due to the poor results obtained for discriminant
analysis on the dependent data, no tests of the
discriminant equations have been carried out on
independent data, apart from a few trial
operational runs. These suggested that
discriminant—-derived predictions would rarely fall
more than twenty percent either side of the
climatological probability for each station.

The independent data set comprised approximately
650 points ©per station, Dbeing the rainfall
occurrences for both day and night periods for the
months January to November 1982 inclusive.
Verifications are presented for the twelve hour
and forty-eight hour prognosis predictions only.

(a) Brier Scores.

On the whole, Brier scores for both forecast
periods were lower (better) for the independent
data than for the dependent data. The only
exceptions were Kelburn, Kaikoura and Invercargill
for 12 hour predictions and Rotorua, Gisborne,
Kelburn and Invercargill for forty-eight hours.
Mean scores over all stations were 0.138 and 0.174
for 12 and 48 hours respectively, compared with
0.144 and 0.181 for the dependent data. 1982 was
a relatively low-rainfall year for many places.
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As the regression estimates are biased slightly
low, this would assist in giving good
verifications. Scores for all stations may Dbe
seen in Fig.3, which also includes the comparable
scores obtained by forecasting ‘climatology’
(calculated from seasonal trend equations) every
period. As Fig.3(b) shows, while the accuracy of
predictions becomes quite low at most stations for
forty~eight hour forecasts, it still remains
better than a . forecast of climatology. One may
apply a T-test to the differences in Brier scores
obtained by two different forecasting methods,
usin? the following assumed distribution (Miller
1962).

(Bx - By) M(M-1 \
~ t(M-1)  (9)
M M
[% (Bxm - Byn)1?
Z(Bxn — Byn)? - L -
=l- — M
where By and B represent the mean Brier

scores for the two forecasting schemes X and Y,
while Byxy and Byp represent individual Brier
scores for each scheme on occasion m. Using a 95
percent significance level, regression scores were
significantly lower then those for climatology for
twelve hour forecasts at all stations as well as
for forecasts taken together over all the
stations. With increasing prognosis period,
however, improvements over climatology tend not to
be significant, since the MOS technique hedges
towards climatology more and more as prognosis
period increases. At the forty-eight hour
prognosis period, the improvement over climatology
was not significant at seven stations; Rotorua,
Wellington, Nelson, Kaikoura, Christchurch,
Dunedin and Invercargill, and was only marginally
significant at all other stations, apart from
Hokitika. Based on the 1982 verifications,
regression equations appear at least to give
stable predictions over independent samples.

(b) Hanssen Scores

Using a threshold of fifty percent to signify a
forecast of 'rain', the average scores over all
stations for twelve and forty-eight hour
predictions were 0.492 and 0.301 respectively.
Using the relative frequencies of occurrence of
rain from the dependent sample ('climatology') as
the threshold, these scores increased to 0.534 and
0.352. As a comparison with manual forecasts,
Table 5 gives the individual scores for each
station, using a threshold of fifty percent, along

with the scores obtained by Thompson (1968) for
manual forecasts, at the appropriate stations.
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Table 5:
Hanssen Scores for Regression Estimates
on Independent data
STATION 12 HOUR 48 HOUR MANUAL
PROGNOSIS PROGNOSIS FORECAST
(24 hours)
AK 0.508 0.289 0.450
RO 0.467 0.289
GS 0.524 0.267
NP 0.577 0.416
OH 0.475 0.318
PP 0.485 0.267
KL, 0.430 0.253 0.418
NS 0.488 0.134
HK 0.652 0.517
KI 0.346 0.136
CH 0.342 0.115 0.314
DN 0.294 0.122
NV 0.421 0.261 0.320

The scores obtained for twelve hour forecasts are
slightly higher than those for manual forecasts,
while skill generally Dbecomes very 1low as the
prognosis period increases to forty-eight hours
with severe underforecasting of precipitation
occurrence becoming apparent.

(c) Reliability

A useful measure of the skill of probability
forecasts is that of 'reliability', which is a
comparison between forecast 1likelihood and the
actual 1likelihood of occurrence. For example,
with a perfectly reliable forecasting scheme,
precipitation should occur on twenty percent of
occasions when the forecast probability of
occurrence was twenty percent, and 'so on.
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Figure 4 Reliability of regression estimates.

Independent data.

Twelve hour predictions:

Forty—~eight hour predictions: .
Figure 4 shows a plot of forecast versus actual
relative frequencies taken over all stations, for
both forecast periods considered. Forecasts were
divided into eleven categories, centered on 2.5,
10, 20, 30, 40, 50, 60, 70, 80, 90, and 97.5
percent. As can be seen from the figures, the
twelve hour forecast probability is high and too
high when the actual probability is low. This
tendency 1is reversed near either end of the
probability scale, reflecting non-linearities
inherent in the real relationships between the
predictors and the predictand. For forty-eight
hour prognoses, almost all categories fall below
the ‘'perfect fit' 1line, suggesting a consistent
low bias in the forecasts.

Probabilities most frequently forecast are those
near the climatological probabilities of
occurrence, especially for the longest prognosis
period, as may be expected. This leads to the
greatest deviation from 'perfect' reliability, at
forecast probabilities of about thirty percent.



23

3. CONCLUSIONS

Given the data used here, a linear regression
approach to probability of precipitation
forecasting produces more useful results than
linear discriminant analysis.  Using the NWP data
available at present, only short forecast period
predictions show a useful level of skill. Use of
output from a more advanced and higher resolution
numerical model should produce better estimates
over the longer (more than twenty-four hours)
forecast periods. The level of skill obtained by
regression estimation appears sufficiently high to
allow these estimates to be used as guidance for
the forecaster, at least over the short range, if
rainfall forecasts are to be issued operationally
in terms of probability of occurrence.

Some form of non-linear technique may produce more
satisfactory results for at least some of the
stations and further work needs to be done on the
statistical techniques used for probability
forecasting.
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